Spelling suggestions: "subject:"last transform"" "subject:"past transform""
1 |
Application of stable signal recovery to seismic interpolationHennenfent, Gilles, Herrmann, Felix J. January 2006 (has links)
We propose a method for seismic data interpolation based on 1) the reformulation of the problem as a stable signal recovery problem and 2) the fact that seismic data is sparsely represented by curvelets. This method does not require information on the seismic velocities. Most importantly, this formulation potentially leads to an explicit recovery condition. We also propose a large-scale problem solver for the l1-regularization minimization involved in the recovery and successfully illustrate the performance of our algorithm on 2D synthetic and real examples.
|
2 |
Multi-Resolution Analysis Using Wavelet Basis Conditioned on HomogenizationLasisi, Abibat Adebisi 01 December 2018 (has links)
This dissertation considers an approximation strategy using a wavelet reconstruction scheme for solving elliptic problems. The foci of the work are on (1) the approximate solution of differential equations using multiresolution analysis based on wavelet transforms and (2) the homogenization process for solving one and two-dimensional problems, to understand the solutions of second order elliptic problems. We employed homogenization to compute the average formula for permeability in a porous medium. The structure of the associated multiresolution analysis allows for the reconstruction of the approximate solution of the primary variable in the elliptic equation. Using a one-dimensional wavelet reconstruction algorithm proposed in this work, we are able to numerically compute the approximations of the pressure variables. This algorithm can directly be applied to elliptic problems with discontinuous coefficients.We also implemented Java codes to solve the two dimensional elliptic problems using our methods of solutions. Furthermore, we propose homogenization wavelet reconstruction algorithm, fast transform and the inverse transform algorithms that use the results from the solutions of the local problems and the partial derivatives of the pressure variables to reconstruct the solutions.
|
3 |
Arrays de microfones para medida de campos acústicos. / Microphone arrays for acoustic field measurements.Ribeiro, Flávio Protásio 23 January 2012 (has links)
Imageamento acústico é um problema computacionalmente caro e mal-condicionado, que envolve estimar distribuições de fontes com grandes arranjos de microfones. O método clássico para imageamento acústico utiliza beamforming, e produz a distribuição de fontes de interesse convoluída com a função de espalhamento do arranjo. Esta convolução borra a imagem ideal, significativamente diminuindo sua resolução. Convoluções podem ser evitadas com técnicas de ajuste de covariância, que produzem estimativas de alta resolução. Porém, estas têm sido evitadas devido ao seu alto custo computacional. Nesta tese, admitimos um arranjo bidimensional com geometria separável, e desenvolvemos transformadas rápidas para acelerar imagens acústicas em várias ordens de grandeza. Estas transformadas são genéricas, e podem ser aplicadas para acelerar beamforming, algoritmos de deconvolução e métodos de mínimos quadrados regularizados. Assim, obtemos imagens de alta resolução com algoritmos estado-da-arte, mantendo baixo custo computacional. Mostramos que arranjos separáveis produzem estimativas competitivas com as de geometrias espirais logaritmicas, mas com enormes vantagens computacionais. Finalmente, mostramos como estender este método para incorporar calibração, um modelo para propagação em campo próximo e superfícies focais arbitrárias, abrindo novas possibilidades para imagens acústicas. / Acoustic imaging is a computationally intensive and ill-conditioned inverse problem, which involves estimating high resolution source distributions with large microphone arrays. The classical method for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Convolutions can be avoided with covariance fitting methods, which have been known to produce robust high-resolution estimates. However, these have been avoided due to prohibitive computational costs. In this thesis, we assume a 2D separable array geometry, and develop fast transforms to accelerate acoustic imaging by several orders of magnitude with respect to previous methods. These transforms are very generic, and can be applied to accelerate beamforming, deconvolution algorithms and regularized least-squares solvers. Thus, one can obtain high-resolution images with state-of-the-art algorithms, while maintaining low computational cost. We show that separable arrays deliver accuracy competitive with multi-arm spiral geometries, while producing huge computational benefits. Finally, we show how to extend this approach with array calibration, a near-field propagation model and arbitrary focal surfaces, opening new and exciting possibilities for acoustic imaging.
|
4 |
Arrays de microfones para medida de campos acústicos. / Microphone arrays for acoustic field measurements.Flávio Protásio Ribeiro 23 January 2012 (has links)
Imageamento acústico é um problema computacionalmente caro e mal-condicionado, que envolve estimar distribuições de fontes com grandes arranjos de microfones. O método clássico para imageamento acústico utiliza beamforming, e produz a distribuição de fontes de interesse convoluída com a função de espalhamento do arranjo. Esta convolução borra a imagem ideal, significativamente diminuindo sua resolução. Convoluções podem ser evitadas com técnicas de ajuste de covariância, que produzem estimativas de alta resolução. Porém, estas têm sido evitadas devido ao seu alto custo computacional. Nesta tese, admitimos um arranjo bidimensional com geometria separável, e desenvolvemos transformadas rápidas para acelerar imagens acústicas em várias ordens de grandeza. Estas transformadas são genéricas, e podem ser aplicadas para acelerar beamforming, algoritmos de deconvolução e métodos de mínimos quadrados regularizados. Assim, obtemos imagens de alta resolução com algoritmos estado-da-arte, mantendo baixo custo computacional. Mostramos que arranjos separáveis produzem estimativas competitivas com as de geometrias espirais logaritmicas, mas com enormes vantagens computacionais. Finalmente, mostramos como estender este método para incorporar calibração, um modelo para propagação em campo próximo e superfícies focais arbitrárias, abrindo novas possibilidades para imagens acústicas. / Acoustic imaging is a computationally intensive and ill-conditioned inverse problem, which involves estimating high resolution source distributions with large microphone arrays. The classical method for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Convolutions can be avoided with covariance fitting methods, which have been known to produce robust high-resolution estimates. However, these have been avoided due to prohibitive computational costs. In this thesis, we assume a 2D separable array geometry, and develop fast transforms to accelerate acoustic imaging by several orders of magnitude with respect to previous methods. These transforms are very generic, and can be applied to accelerate beamforming, deconvolution algorithms and regularized least-squares solvers. Thus, one can obtain high-resolution images with state-of-the-art algorithms, while maintaining low computational cost. We show that separable arrays deliver accuracy competitive with multi-arm spiral geometries, while producing huge computational benefits. Finally, we show how to extend this approach with array calibration, a near-field propagation model and arbitrary focal surfaces, opening new and exciting possibilities for acoustic imaging.
|
5 |
Estudo da transformada r?pida wavelet e sua conex?o com banco de filtrosBarbosa, Francisco M?rcio 17 September 2008 (has links)
Made available in DSpace on 2014-12-17T15:26:36Z (GMT). No. of bitstreams: 1
FranciscoMB.pdf: 1735858 bytes, checksum: 1307c69bd6f2b893c3fd27379c0533db (MD5)
Previous issue date: 2008-09-17 / In this work we presented an exhibition of the mathematical theory of orthogonal compact support wavelets in the context of multiresoluction analysis. These are particularly attractive wavelets because they lead to a stable and very efficient algorithm, that is Fast Transform Wavelet (FWT). One of our objectives is to develop efficient algorithms for calculating the coefficients wavelet (FWT) through the pyramid algorithm of Mallat and to discuss his connection
with filters Banks. We also studied the concept of multiresoluction analysis, that is the context in that wavelets
can be understood and built naturally, taking an important step in the change from the Mathematical universe (Continuous Domain) for the Universe of the representation (Discret Domain) / Neste trabalho apresentamos uma exposi??o da teoria matem?tica das wavelets ortogonais de suporte compacto no contexto de an?lise de multiresolu??o. Estas wavelets s?o particularmente atraentes porque conduzem a um algoritmo est?vel e muito eficiente, isto ?, a Transformada R?pida Wavelet (FWT). Um dos nossos objetivos ? desenvolver algoritmos eficientes para o calculo dos coeficientes wavelet (FWT) atrav?s do algoritmo pir?midal de Mallat e discutir sua
conex?o com Banco de Filtros. Estudamos tamb?m o conceito de an?lise de multiresolu??o, que ? o contexto em que wavelets podem ser entendidas e constru?das naturalmente, tomando um importante passo na mudan?a do universo Matem?tico (Dom?nio Cont?nuo) para o Universo da representa??o (Dom?nio Discreto).
|
Page generated in 0.0608 seconds