• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

First Principles Studies on Chemical and Electronic Structures of Adsorbates

Zhang, Wenhua January 2009 (has links)
In this thesis, we focus on theoretical study of adsorbates on metal and oxide surfaces that are important for surface chemistry and catalysis. Based on first principles calculations, the adsorption ofCO, NO, NO2, C4H6S2, C22H27SH and other molecules or radicals on nobel metal surfaces (gold and silver) are investigated. Also, NO oxidation on oxygen pre-covered Au(111)surface and CO oxidation on water-oxygen covered Au(111)surface aretheoretically studied. A new mechanism of water-enhanced COoxidation is proposed. As for oxide surfaces, we first investigatethe geometric, electronic and magnetic structures of FeO ultrathin film on Pt(111) surface. The experimentally observed scanning tunneling microscopy images are well reproduced for the first timewith our model. The adsorption and dissociation of water on rutileTiO2(110) surface are investigated by quantum molecular dynamics.By theoretical X-ray photoemission spectroscopy (XPS) calculations,the surface species are properly assigned. The same strategy has applied to the study of the phase transition of water covered reconstructed anatase TiO2(001) surface, from which two different phases are theoretically identified. The structure of graphene oxideis also studied by comparing experimental and theoretical XPS spectra. Based on the novel structures identified, a new cutmechanism of graphene oxide is proposed. / QC 20100819

Page generated in 0.0831 seconds