Spelling suggestions: "subject:"fator dde aumento dde dos"" "subject:"fator dde aumento dde done""
1 |
Fator de aumento de dose em Radioterapia com nanopartículas: estudo por simulação Monte Carlo / Dose enhancement factor in radiation therapy with nanoparticles: a Monte Carlo simulation study.Santos, Vinicius Fernando dos 29 November 2017 (has links)
A incorporação de nanopartículas metálicas em tecidos tumorais tem sido estudada em Radioterapia devido ao aumento de dose que pode ser obtido no volume alvo do tratamento. Estudos indicam que nanopartículas de ouro (AuNP) estão entre as de maior viabilidade biológica para essas aplicações, devido ao baixo potencial tóxico. Além disso, estudos mostram que AuNP de alguns nanômetros até alguns micrômetros podem permear vasos sanguíneos que alimentam tumores, permitindo sua incorporação nas células tumorais. Desta forma, este trabalho visou estudar os fatores de aumento de dose obtidos em Radioterapia com AuNP incorporadas ao tecido tumoral utilizando feixes de ortovoltagem, de braquiterapia e de teleterapia. Este trabalho utilizou de uma metodologia computacional, através de simulação Monte Carlo com o código PENELOPE. Foram simulados feixes clínicos de 50, 80, 150 e 250 kVp, Ir-192 e 6 MV, e um modelo de célula tumoral com AuNPs incorporadas com diferentes concentrações de ouro. O modelo de células utilizado possui 13 µm de diâmetro externo máximo e 2 µm de diâmetro no núcleo. Dois modelos de incorporação de AuNPs foram implementados: modelo homogêneo e modelo heterogêneo. No modelo homogêneo, as AuNP foram distribuídas homogeneamente no núcleo e as células foram irradiadas nas diferentes energias estudadas para avaliar o fator de aumento de dose (DEF) em função da concentração de ouro na célula e da energia do feixe. No modelo heterogêneo, aglomerados de AuNPs foram simulados individualmente dentro da célula. Neste modelo foram utilizados somente os espetros de radiação que apresentaram os melhores desempenhos no modelo homogêneo. Foram avaliadas a fluência de partículas ejetadas nas AuNPs, o DEF, as distribuições de doses e os perfis de dose com aglomerados de 50 a 220 nm na célula. Os resultados obtidos para o modelo homogêneo mostram que os feixes de baixa energia são os que proporcionam maior DEF para uma mesma concentração de AuNP. Os maiores DEFs obtidos foram de 2,80; 2,99; 1,62 e 1,61, para os feixes de 50 kVp, 80 kVp, 150 kVp, 250 kVp, respectivamente, sendo a maior incerteza de 1,9% para o feixe de 250 kVp. Através dos resultados obtidos com o modelo heterogêneo foi possível concluir que os elétrons ejetados possuem maior influência no aumento local da dose. Os perfis de dose, extraídos das distribuições de doses, para os aglomerados simulados permitiram obter os alcances das isodoses de 50, 20 e 10% da dose no entorno das AuNPs. Através desses perfis de dose pode-se concluir que o aumento de dose é local, da ordem de alguns micrômetros, dependendo do tamanho das nanopartículas e da energia do feixe primário. Para o feixe de 50 kVp, o DEF encontrado para uma incorporação heterogênea de seis aglomerados de AuNPs, correspondendo a um modelo clínico real, foi de 1,79, com incerteza de 0,4%. Com base nos resultados obtidos pode-se concluir que as energias de ortovoltagem proporcionam maior fator de aumento de dose que feixes de megavoltagem utilizados em teleterapia convencional. Além disso, o reforço local de dose pode proporcionar um fator de radiossensibilização celular se as AuNPs forem incorporadas no núcleo das células, nas redondezas do DNA, proporcionando um maior potencial de controle tumoral. / The incorporation of metal nanoparticles into tumor tissues has been studied in radiation therapy given of the dose enhancement that can be obtained in the target volume of the treatment. Studies indicate that gold nanoparticles (AuNP) are among the highest biologically viable for such applications, due to their low toxic potential. In addition, studies show that AuNP from a few nanometers to a few micrometers can permeate blood vessels that feed tumors, allowing their incorporation into tumor cells. Hence, this study´s goal was to study the dose enhancement factors obtained in radiation therapy with AuNP incorporated in the tumor using orthovoltage, brachytherapy and teletherapy beams. This work used a computational methodology, through Monte Carlo simulation with the PENELOPE package. Clinical beams of 50, 80, 150 and 250 kVp, Ir-192 and 6 MV were simulated with a tumor cell model with incorporated AuNPs. The cell model has maximum outer diameter of 13 m and 2 m of nucleus diameter. Two models of AuNP incorporation were implemented: homogeneous model and heterogeneous model. In the homogeneous model the AuNP were distributed homogeneously in the nucleus and the cells were irradiated in the different beams studied to evaluate the dose enhancement factors (DEF) as a function of concentration of gold in the cell and radiation beam. In the heterogeneous model, clusters of AuNPs were simulated individually within the cell. In this model, the radiation spectra used was selected among those that presented the best performances in the homogeneous model. The fluence of particles ejected from the AuNPs, the DEFs, the dose distributions and dose profiles for clusters of 50 to 220 nm in the cell were evaluated. The results obtained for the homogeneous model show that lower energy beams provide the highest DEFs for the same concentration of AuNP. The highest DEFs obtained were 2.80; 2.99; 1.62 and 1.61, for the beams of 50 kVp, 80 kVp, 150 kVp, 250 kVp, respectively, with a maximun uncertainty of 1.9% for the 250 kVp beam. Through the results obtained with the heterogeneous model it was possible to conclude that the electrons ejected from he AuNPs have the major influence on the local dose enhancement. The dose profiles extracted from the dose distributions for the simulated clusters allowed the evaluation of the ranges for the 50, 20 and 10% isodoses in the surroundings of the AuNPs. Through these dose profiles, it can be concluded that the dose increase is local, in the order of a few micrometers, depending on the size of the nanoparticles and the energy of the primary beam. For the 50 kVp beam, the DEF found for a heterogeneous incorporation of six clusters of AuNPs, corresponding to an actual clinical model, was 1.79, with uncertainty of 0.4%. Based on the results obtained it can be concluded that kilovoltage energies provide a higher dose enhancement factor than megavoltage beams used in teletherapy. In addition, local dose enhancement may provide a cellular radiosensitization factor if the nanoparticles are incorporated in the nucleus of the cells, in the vicinity of the DNA, providing an enhanced potential for tumor control.
|
2 |
Fator de aumento de dose em Radioterapia com nanopartículas: estudo por simulação Monte Carlo / Dose enhancement factor in radiation therapy with nanoparticles: a Monte Carlo simulation study.Vinicius Fernando dos Santos 29 November 2017 (has links)
A incorporação de nanopartículas metálicas em tecidos tumorais tem sido estudada em Radioterapia devido ao aumento de dose que pode ser obtido no volume alvo do tratamento. Estudos indicam que nanopartículas de ouro (AuNP) estão entre as de maior viabilidade biológica para essas aplicações, devido ao baixo potencial tóxico. Além disso, estudos mostram que AuNP de alguns nanômetros até alguns micrômetros podem permear vasos sanguíneos que alimentam tumores, permitindo sua incorporação nas células tumorais. Desta forma, este trabalho visou estudar os fatores de aumento de dose obtidos em Radioterapia com AuNP incorporadas ao tecido tumoral utilizando feixes de ortovoltagem, de braquiterapia e de teleterapia. Este trabalho utilizou de uma metodologia computacional, através de simulação Monte Carlo com o código PENELOPE. Foram simulados feixes clínicos de 50, 80, 150 e 250 kVp, Ir-192 e 6 MV, e um modelo de célula tumoral com AuNPs incorporadas com diferentes concentrações de ouro. O modelo de células utilizado possui 13 µm de diâmetro externo máximo e 2 µm de diâmetro no núcleo. Dois modelos de incorporação de AuNPs foram implementados: modelo homogêneo e modelo heterogêneo. No modelo homogêneo, as AuNP foram distribuídas homogeneamente no núcleo e as células foram irradiadas nas diferentes energias estudadas para avaliar o fator de aumento de dose (DEF) em função da concentração de ouro na célula e da energia do feixe. No modelo heterogêneo, aglomerados de AuNPs foram simulados individualmente dentro da célula. Neste modelo foram utilizados somente os espetros de radiação que apresentaram os melhores desempenhos no modelo homogêneo. Foram avaliadas a fluência de partículas ejetadas nas AuNPs, o DEF, as distribuições de doses e os perfis de dose com aglomerados de 50 a 220 nm na célula. Os resultados obtidos para o modelo homogêneo mostram que os feixes de baixa energia são os que proporcionam maior DEF para uma mesma concentração de AuNP. Os maiores DEFs obtidos foram de 2,80; 2,99; 1,62 e 1,61, para os feixes de 50 kVp, 80 kVp, 150 kVp, 250 kVp, respectivamente, sendo a maior incerteza de 1,9% para o feixe de 250 kVp. Através dos resultados obtidos com o modelo heterogêneo foi possível concluir que os elétrons ejetados possuem maior influência no aumento local da dose. Os perfis de dose, extraídos das distribuições de doses, para os aglomerados simulados permitiram obter os alcances das isodoses de 50, 20 e 10% da dose no entorno das AuNPs. Através desses perfis de dose pode-se concluir que o aumento de dose é local, da ordem de alguns micrômetros, dependendo do tamanho das nanopartículas e da energia do feixe primário. Para o feixe de 50 kVp, o DEF encontrado para uma incorporação heterogênea de seis aglomerados de AuNPs, correspondendo a um modelo clínico real, foi de 1,79, com incerteza de 0,4%. Com base nos resultados obtidos pode-se concluir que as energias de ortovoltagem proporcionam maior fator de aumento de dose que feixes de megavoltagem utilizados em teleterapia convencional. Além disso, o reforço local de dose pode proporcionar um fator de radiossensibilização celular se as AuNPs forem incorporadas no núcleo das células, nas redondezas do DNA, proporcionando um maior potencial de controle tumoral. / The incorporation of metal nanoparticles into tumor tissues has been studied in radiation therapy given of the dose enhancement that can be obtained in the target volume of the treatment. Studies indicate that gold nanoparticles (AuNP) are among the highest biologically viable for such applications, due to their low toxic potential. In addition, studies show that AuNP from a few nanometers to a few micrometers can permeate blood vessels that feed tumors, allowing their incorporation into tumor cells. Hence, this study´s goal was to study the dose enhancement factors obtained in radiation therapy with AuNP incorporated in the tumor using orthovoltage, brachytherapy and teletherapy beams. This work used a computational methodology, through Monte Carlo simulation with the PENELOPE package. Clinical beams of 50, 80, 150 and 250 kVp, Ir-192 and 6 MV were simulated with a tumor cell model with incorporated AuNPs. The cell model has maximum outer diameter of 13 m and 2 m of nucleus diameter. Two models of AuNP incorporation were implemented: homogeneous model and heterogeneous model. In the homogeneous model the AuNP were distributed homogeneously in the nucleus and the cells were irradiated in the different beams studied to evaluate the dose enhancement factors (DEF) as a function of concentration of gold in the cell and radiation beam. In the heterogeneous model, clusters of AuNPs were simulated individually within the cell. In this model, the radiation spectra used was selected among those that presented the best performances in the homogeneous model. The fluence of particles ejected from the AuNPs, the DEFs, the dose distributions and dose profiles for clusters of 50 to 220 nm in the cell were evaluated. The results obtained for the homogeneous model show that lower energy beams provide the highest DEFs for the same concentration of AuNP. The highest DEFs obtained were 2.80; 2.99; 1.62 and 1.61, for the beams of 50 kVp, 80 kVp, 150 kVp, 250 kVp, respectively, with a maximun uncertainty of 1.9% for the 250 kVp beam. Through the results obtained with the heterogeneous model it was possible to conclude that the electrons ejected from he AuNPs have the major influence on the local dose enhancement. The dose profiles extracted from the dose distributions for the simulated clusters allowed the evaluation of the ranges for the 50, 20 and 10% isodoses in the surroundings of the AuNPs. Through these dose profiles, it can be concluded that the dose increase is local, in the order of a few micrometers, depending on the size of the nanoparticles and the energy of the primary beam. For the 50 kVp beam, the DEF found for a heterogeneous incorporation of six clusters of AuNPs, corresponding to an actual clinical model, was 1.79, with uncertainty of 0.4%. Based on the results obtained it can be concluded that kilovoltage energies provide a higher dose enhancement factor than megavoltage beams used in teletherapy. In addition, local dose enhancement may provide a cellular radiosensitization factor if the nanoparticles are incorporated in the nucleus of the cells, in the vicinity of the DNA, providing an enhanced potential for tumor control.
|
Page generated in 0.1129 seconds