• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fatoração de matrizes no problema de coagrupamento com sobreposição de colunas / Matrix factorization for overlapping columns coclustering

Brunialti, Lucas Fernandes 31 August 2016 (has links)
Coagrupamento é uma estratégia para análise de dados capaz de encontrar grupos de dados, então denominados cogrupos, que são formados considerando subconjuntos diferentes das características descritivas dos dados. Contextos de aplicação caracterizados por apresentar subjetividade, como mineração de texto, são candidatos a serem submetidos à estratégia de coagrupamento; a flexibilidade em associar textos de acordo com características parciais representa um tratamento adequado a tal subjetividade. Um método para implementação de coagrupamento capaz de lidar com esse tipo de dados é a fatoração de matrizes. Nesta dissertação de mestrado são propostas duas estratégias para coagrupamento baseadas em fatoração de matrizes não-negativas, capazes de encontrar cogrupos organizados com sobreposição de colunas em uma matriz de valores reais positivos. As estratégias são apresentadas em termos de suas definições formais e seus algoritmos para implementação. Resultados experimentais quantitativos e qualitativos são fornecidos a partir de problemas baseados em conjuntos de dados sintéticos e em conjuntos de dados reais, sendo esses últimos contextualizados na área de mineração de texto. Os resultados são analisados em termos de quantização do espaço e capacidade de reconstrução, capacidade de agrupamento utilizando as métricas índice de Rand e informação mútua normalizada e geração de informação (interpretabilidade dos modelos). Os resultados confirmam a hipótese de que as estratégias propostas são capazes de descobrir cogrupos com sobreposição de forma natural, e que tal organização de cogrupos fornece informação detalhada, e portanto de valor diferenciado, para as áreas de análise de agrupamento e mineração de texto / Coclustering is a data analysis strategy which is able to discover data clusters, known as coclusters. This technique allows data to be clustered based on different subsets defined by data descriptive features. Application contexts characterized by subjectivity, such as text mining, are candidates for applying coclustering strategy due to the flexibility to associate documents according to partial features. The coclustering method can be implemented by means of matrix factorization, which is suitable to handle this type of data. In this thesis two strategies are proposed in non-negative matrix factorization for coclustering. These strategies are able to find column overlapping coclusters in a given dataset of positive data and are presented in terms of their formal definitions as well as their algorithms\' implementation. Quantitative and qualitative experimental results are presented through applying synthetic datasets and real datasets contextualized in text mining. This is accomplished by analyzing them in terms of space quantization, clustering capabilities and generated information (interpretability of models). The well known external metrics Rand index and normalized mutual information are used to achieve the analysis of clustering capabilities. Results confirm the hypothesis that the proposed strategies are able to discover overlapping coclusters naturally. Moreover, these coclusters produced by the new algorithms provide detailed information and are thus valuable for future research in cluster analysis and text mining
2

Simplificação e análise de redes com dados multivariados / Simplification and analysis of network with multivariate data

Dias, Markus Diego Sampaio da Silva 17 October 2018 (has links)
As técnicas de visualização desempenham um papel importante na assistência e compreensão de redes e seus elementos. No entanto, quando enfrentamos redes massivas, a análise tende a ser prejudicada pela confusão visual. Esquemas de simplificação e agrupamento têm sido algumas das principais alternativas neste contexto. No entanto, a maioria das técnicas de simplificação consideram apenas informações extraídas da topologia da rede, desconsiderando conteúdo adicional definido nos nós ou arestas da rede. Neste trabalho, propomos dois estudos. Primeiro uma nova metodologia para simplificação de redes que utiliza tanto a topologia quanto o conteúdo associado aos elementos de rede. A metodologia proposta baseia-se na fatoração de matriz não negativa (NMF) e emparelhamento para realizar a simplificação, combinadas para gerar uma representação hierárquica da rede, agrupando elementos semelhantes em cada nível da hierarquia. Propomos também um estudo da utilização da teoria de processamento de sinal em grafos para filtrar os dados associados aos elementos da rede e o seu efeito no processo de simplificação. / Visualization tools play an important role in assisting and understanding networks and their elements. However, when faced with larger networks, analytical tasks can be hindered by visual clutter. Schemes of simplification and clustering have been a main alternative in this context. Nevertheless, most simplification techniques consider only information extracted from the network topology, disregarding additional content defined in nodes or edges. In this paper, we propose two studies. First, a new methodology for network simplification that uses both topology and content associated with network elements. The proposed methodology is based on non-negative matrix factorization (NMF) and graph matching to perform the simplification, combined to generate a hierarchical representation of the network, grouping the most similar elements at each level of a hierarchy. We also provide a study of the use of the graph signal processing theory to filter data associated to the elements of a network and its effect in the process of simplification.
3

Fatoração de matrizes no problema de coagrupamento com sobreposição de colunas / Matrix factorization for overlapping columns coclustering

Lucas Fernandes Brunialti 31 August 2016 (has links)
Coagrupamento é uma estratégia para análise de dados capaz de encontrar grupos de dados, então denominados cogrupos, que são formados considerando subconjuntos diferentes das características descritivas dos dados. Contextos de aplicação caracterizados por apresentar subjetividade, como mineração de texto, são candidatos a serem submetidos à estratégia de coagrupamento; a flexibilidade em associar textos de acordo com características parciais representa um tratamento adequado a tal subjetividade. Um método para implementação de coagrupamento capaz de lidar com esse tipo de dados é a fatoração de matrizes. Nesta dissertação de mestrado são propostas duas estratégias para coagrupamento baseadas em fatoração de matrizes não-negativas, capazes de encontrar cogrupos organizados com sobreposição de colunas em uma matriz de valores reais positivos. As estratégias são apresentadas em termos de suas definições formais e seus algoritmos para implementação. Resultados experimentais quantitativos e qualitativos são fornecidos a partir de problemas baseados em conjuntos de dados sintéticos e em conjuntos de dados reais, sendo esses últimos contextualizados na área de mineração de texto. Os resultados são analisados em termos de quantização do espaço e capacidade de reconstrução, capacidade de agrupamento utilizando as métricas índice de Rand e informação mútua normalizada e geração de informação (interpretabilidade dos modelos). Os resultados confirmam a hipótese de que as estratégias propostas são capazes de descobrir cogrupos com sobreposição de forma natural, e que tal organização de cogrupos fornece informação detalhada, e portanto de valor diferenciado, para as áreas de análise de agrupamento e mineração de texto / Coclustering is a data analysis strategy which is able to discover data clusters, known as coclusters. This technique allows data to be clustered based on different subsets defined by data descriptive features. Application contexts characterized by subjectivity, such as text mining, are candidates for applying coclustering strategy due to the flexibility to associate documents according to partial features. The coclustering method can be implemented by means of matrix factorization, which is suitable to handle this type of data. In this thesis two strategies are proposed in non-negative matrix factorization for coclustering. These strategies are able to find column overlapping coclusters in a given dataset of positive data and are presented in terms of their formal definitions as well as their algorithms\' implementation. Quantitative and qualitative experimental results are presented through applying synthetic datasets and real datasets contextualized in text mining. This is accomplished by analyzing them in terms of space quantization, clustering capabilities and generated information (interpretability of models). The well known external metrics Rand index and normalized mutual information are used to achieve the analysis of clustering capabilities. Results confirm the hypothesis that the proposed strategies are able to discover overlapping coclusters naturally. Moreover, these coclusters produced by the new algorithms provide detailed information and are thus valuable for future research in cluster analysis and text mining
4

Biagrupamento heurístico e coagrupamento baseado em fatoração de matrizes: um estudo em dados textuais / Heuristic biclustering and coclustering based on matrix factorization: a study on textual data

Ramos Diaz, Alexandra Katiuska 16 October 2018 (has links)
Biagrupamento e coagrupamento são tarefas de mineração de dados que permitem a extração de informação relevante sobre dados e têm sido aplicadas com sucesso em uma ampla variedade de domínios, incluindo aqueles que envolvem dados textuais -- foco de interesse desta pesquisa. Nas tarefas de biagrupamento e coagrupamento, os critérios de similaridade são aplicados simultaneamente às linhas e às colunas das matrizes de dados, agrupando simultaneamente os objetos e os atributos e possibilitando a criação de bigrupos/cogrupos. Contudo suas definições variam segundo suas naturezas e objetivos, sendo que a tarefa de coagrupamento pode ser vista como uma generalização da tarefa de biagrupamento. Estas tarefas, quando aplicadas nos dados textuais, demandam uma representação em um modelo de espaço vetorial que, comumente, leva à geração de espaços caracterizados pela alta dimensionalidade e esparsidade, afetando o desempenho de muitos dos algoritmos. Este trabalho apresenta uma análise do comportamento do algoritmo para biagrupamento Cheng e Church e do algoritmo para coagrupamento de decomposição de valores em blocos não negativos (\\textit{Non-Negative Block Value Decomposition} - NBVD), aplicado ao contexto de dados textuais. Resultados experimentais quantitativos e qualitativos são apresentados a partir das experimentações destes algoritmos em conjuntos de dados sintéticos criados com diferentes níveis de esparsidade e em um conjunto de dados real. Os resultados são avaliados em termos de medidas próprias de biagrupamento, medidas internas de agrupamento a partir das projeções nas linhas dos bigrupos/cogrupos e em termos de geração de informação. As análises dos resultados esclarecem questões referentes às dificuldades encontradas por estes algoritmos nos ambiente de experimentação, assim como se são capazes de fornecer informações diferenciadas e úteis na área de mineração de texto. De forma geral, as análises realizadas mostraram que o algoritmo NBVD é mais adequado para trabalhar com conjuntos de dados em altas dimensões e com alta esparsidade. O algoritmo de Cheng e Church, embora tenha obtidos resultados bons de acordo com os objetivos do algoritmo, no contexto de dados textuais, propiciou resultados com baixa relevância / Biclustering e coclustering are data mining tasks that allow the extraction of relevant information about data and have been applied successfully in a wide variety of domains, including those involving textual data - the focus of interest of this research. In biclustering and coclustering tasks, similarity criteria are applied simultaneously to the rows and columns of the data matrices, simultaneously grouping the objects and attributes and enabling the discovery of biclusters/coclusters. However their definitions vary according to their natures and objectives, being that the task of coclustering can be seen as a generalization of the task of biclustering. These tasks applied in the textual data demand a representation in a model of vector space, which commonly leads to the generation of spaces characterized by high dimensionality and sparsity and influences the performance of many algorithms. This work provides an analysis of the behavior of the algorithm for biclustering Cheng and Church and the algorithm for coclustering non-negative block decomposition (NBVD) applied to the context of textual data. Quantitative and qualitative experimental results are shown, from experiments on synthetic datasets created with different sparsity levels and on a real data set. The results are evaluated in terms of their biclustering oriented measures, internal clustering measures applied to the projections in the lines of the biclusters/coclusters and in terms of generation of information. The analysis of the results clarifies questions related to the difficulties faced by these algorithms in the experimental environment, as well as if they are able to provide differentiated information useful to the field of text mining. In general, the analyses carried out showed that the NBVD algorithm is better suited to work with datasets in high dimensions and with high sparsity. The algorithm of Cheng and Church, although it obtained good results according to its own objectives, provided results with low relevance in the context of textual data
5

Biagrupamento heurístico e coagrupamento baseado em fatoração de matrizes: um estudo em dados textuais / Heuristic biclustering and coclustering based on matrix factorization: a study on textual data

Alexandra Katiuska Ramos Diaz 16 October 2018 (has links)
Biagrupamento e coagrupamento são tarefas de mineração de dados que permitem a extração de informação relevante sobre dados e têm sido aplicadas com sucesso em uma ampla variedade de domínios, incluindo aqueles que envolvem dados textuais -- foco de interesse desta pesquisa. Nas tarefas de biagrupamento e coagrupamento, os critérios de similaridade são aplicados simultaneamente às linhas e às colunas das matrizes de dados, agrupando simultaneamente os objetos e os atributos e possibilitando a criação de bigrupos/cogrupos. Contudo suas definições variam segundo suas naturezas e objetivos, sendo que a tarefa de coagrupamento pode ser vista como uma generalização da tarefa de biagrupamento. Estas tarefas, quando aplicadas nos dados textuais, demandam uma representação em um modelo de espaço vetorial que, comumente, leva à geração de espaços caracterizados pela alta dimensionalidade e esparsidade, afetando o desempenho de muitos dos algoritmos. Este trabalho apresenta uma análise do comportamento do algoritmo para biagrupamento Cheng e Church e do algoritmo para coagrupamento de decomposição de valores em blocos não negativos (\\textit{Non-Negative Block Value Decomposition} - NBVD), aplicado ao contexto de dados textuais. Resultados experimentais quantitativos e qualitativos são apresentados a partir das experimentações destes algoritmos em conjuntos de dados sintéticos criados com diferentes níveis de esparsidade e em um conjunto de dados real. Os resultados são avaliados em termos de medidas próprias de biagrupamento, medidas internas de agrupamento a partir das projeções nas linhas dos bigrupos/cogrupos e em termos de geração de informação. As análises dos resultados esclarecem questões referentes às dificuldades encontradas por estes algoritmos nos ambiente de experimentação, assim como se são capazes de fornecer informações diferenciadas e úteis na área de mineração de texto. De forma geral, as análises realizadas mostraram que o algoritmo NBVD é mais adequado para trabalhar com conjuntos de dados em altas dimensões e com alta esparsidade. O algoritmo de Cheng e Church, embora tenha obtidos resultados bons de acordo com os objetivos do algoritmo, no contexto de dados textuais, propiciou resultados com baixa relevância / Biclustering e coclustering are data mining tasks that allow the extraction of relevant information about data and have been applied successfully in a wide variety of domains, including those involving textual data - the focus of interest of this research. In biclustering and coclustering tasks, similarity criteria are applied simultaneously to the rows and columns of the data matrices, simultaneously grouping the objects and attributes and enabling the discovery of biclusters/coclusters. However their definitions vary according to their natures and objectives, being that the task of coclustering can be seen as a generalization of the task of biclustering. These tasks applied in the textual data demand a representation in a model of vector space, which commonly leads to the generation of spaces characterized by high dimensionality and sparsity and influences the performance of many algorithms. This work provides an analysis of the behavior of the algorithm for biclustering Cheng and Church and the algorithm for coclustering non-negative block decomposition (NBVD) applied to the context of textual data. Quantitative and qualitative experimental results are shown, from experiments on synthetic datasets created with different sparsity levels and on a real data set. The results are evaluated in terms of their biclustering oriented measures, internal clustering measures applied to the projections in the lines of the biclusters/coclusters and in terms of generation of information. The analysis of the results clarifies questions related to the difficulties faced by these algorithms in the experimental environment, as well as if they are able to provide differentiated information useful to the field of text mining. In general, the analyses carried out showed that the NBVD algorithm is better suited to work with datasets in high dimensions and with high sparsity. The algorithm of Cheng and Church, although it obtained good results according to its own objectives, provided results with low relevance in the context of textual data

Page generated in 0.1447 seconds