• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions to Autonomous Operation of a Deep Space Vehicle Power System

Pallavi Madhav Kulkarni (9754367) 14 December 2020 (has links)
<div>The electric power system of a deep space vehicle is mission-critical, and needs to operate autonomously because of high latency in communicating with ground-based mission control. Key tasks to be automated include managing loads under various physical constraints, continuously monitoring the system state to detect and locate faults, and efficiently responding to those faults. </div><div><br></div><div>This work focuses on three aspects for achieving autonomous, fault-tolerant operation in the dc power system of a spacecraft. First, a sequential procedure is proposed to estimate the node voltages and branch currents in the power system from erroneous sensor measurements. An optimal design for the sensor network is also put forth to enable reliable sensor fault detection and identification. Secondly, a machine-learning based approach that utilizes power-spectrum based features of the current signal is suggested to identify component faults in power electronic converters in the system. Finally, an optimization algorithm is set</div><div>forth that decides how to operate the power system under both normal and faulted conditions. Operational decisions include shedding loads, switching lines, and controlling battery charging. Results of case studies considering various faults in the system are presented.</div>

Page generated in 0.13 seconds