Spelling suggestions: "subject:"fault ridethrough capability"" "subject:"fault ridethrough apability""
1 |
Fault Ride through Capability of Off-shore Wind FarmLin, Kwan-Fu 11 September 2007 (has links)
Large off-shore wind farms raise the concern of widespread tripping of off-shore wind generator in the presence of system faults and corresponding voltage dips that could potentially cause system wide blackout. In this thesis an offshore wind farm and three different types of power transmission are modeled and studied using simulation software. Off-shore wind farm composed of fixed speed induction generators and HVAC interconnection, HVAC interconnection plus STATCOM and HVDC interconnections are studied. Onshore grid faults are simulated for each interconnection. Voltage tolerance curves are established to assess fault ride through capability of each interconnection and compared with different grid transmission ride through capacity required by grid operator.
|
2 |
Modeling And Investigation Of Fault Ride Through Capability Of Variable Speed Wind TurbinesKoc, Erkan 01 September 2010 (has links) (PDF)
Technological improvements on wind energy systems with governmental supports have increased the penetration level of wind power into the grid in recent years. The high level of penetration forces the wind turbines stay connected to the grid during the disturbances in order to enhance system stability. Moreover, power system operators must revise their grid codes in parallel with these developments. This work is devoted to the modeling of variable speed wind turbines and the investigation of fault ride trough capability of the wind turbines for grid integration studies.
In the thesis, detailed models of different variable speed wind turbines will be presented. Requirements of grid codes for wind power integration will also be discussed regarding active power control, reactive power control and fault ride through (FRT) capability. Investigation of the wind turbine FRT capability is the main focus of this thesis. Methods to overcome this problem for different types of wind turbines will be also explained in detail. Models of grid-connected wind turbines with doubly-fed induction generator and permanent magnet synchronous generator are implemented in the dedicated power system analysis tool PSCAD/EMTDC. With these models and computer simulations, FRT capabilities ofvariable speed wind turbines have been studied and benchmarked and the influences on the grid during the faults are discussed.
|
Page generated in 0.0511 seconds