• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Survey of Surface Fault Rupture and Structure Interation

Redmond, Lucy 01 October 2012 (has links)
This report aims to raise awareness of the hazards of surface fault rupture and to identify parameters that influence structural performance during earthquake fault rupture. In researching structures subject to surface rupture, both damaged and sound, guidelines and procedures to evaluate buildings in potential hazard areas are developed herein. Little to no guidance on how to design for surface fault offset exists in current codes and design guides. Thus it is important create tools for designers to appropriately analyze structures by developing guidance and requirements to aid designers in their strength assessment of a structure subject to this particular hazard. Case studies of structures damaged by fault rupture, detailed in Section 4.0, provide important clues as to how structures respond when subject to surface offset. These case studies highlight structures that have been tested under the imposed deformations of the ground, providing insight into how building layout and construction techniques can protect the structure, even under extreme offsets. A sample evaluation for Bowles Hall (UC Berkeley) is provided herein in addition to preliminary code equations that may be used to verify and determine a structure’s resistance to surface rupture.
2

The Role of Soil Stiffness in Reverse Fault Rupture Propagation

Buelna, Moises I 01 December 2017 (has links)
A nonlinear Mohr-Coulomb constitutive model with a strain dependent yield surface and non-associated flow was employed to study the plastic soil properties which affect the rate of surface fault rupture propagation in reverse events. These numerical simulations show a trend for soils with higher stiffness to have a higher rate of rupture propagation. Additionally the study shows the effects of strain softening and hardening on the rate of rupture propagation. Soils which strain harden exhibiting ductile behavior typically require more basal offset to rupture to the surface than soils which strain soften exhibiting brittle behavior. These results agree with our previous fault box studies, which showed that soils with higher near surface shear wave velocity were more likely to propagate rupture to the surface for a given reverse event. The numerical modeling allowed for a more comprehensive evaluation of material types and fault angles than the fault box, and provided confidence in these findings.
3

Geodetic methods of mapping earthquake-induced ground deformation and building damage

Diederichs, Anna K. 25 August 2020 (has links)
I use temporal lidar and radar to reveal fault rupture kinematics and to test a method of mapping earthquake-induced structural damage. Using pre- and post-event data, these applications of remote technology offer unique perspectives of earthquake effects. Lidar point clouds can produce high resolution, three-dimensional terrain maps, so subtle landscape shifts can be discerned through temporal analysis, providing detailed imagery of co-seismic ground displacement and faulting. All-weather radar systems record back-scattered signal amplitude and phase. Pre- and post-event comparisons of phase can illuminate co-seismic structural damage using an oblique look angle, most sensitive to changes in building heights. Extracted information from these geodetic methods may be used to inform decisions on future earthquake modeling and emergency response. In the first major section of this thesis, I calculate co-seismic 3D ground deformation produced by the Papatea fault using differential lidar. I demonstrate that this fault - a key element within the 2016 Mw 7.8 Kaikoura earthquake - has a distinctly non-planar geometry, far exceeded typical co-seismic slip-to-length ratios, and defied Andersonian mechanics by slipping vertically at steep angles. Its surface deformation is poorly reproduced by elastic dislocation models, suggesting the Papatea fault did not release stored strain energy as typically assumed, perhaps explaining its seismic quiescence in back-projections. Instead, it slipped in response to neighboring fault movements, creating a localized space problem, accounting for its anelastic deformation field. Thus, modeling complex, multiple-fault earthquakes as slip on planar faults embedded in an elastic medium may not always be appropriate. For the second major part of this thesis, I compare mean values of interferometric synthetic aperture radar (InSAR) coherence change across four case studies of earthquake-induced building damage. These include the 2016 Amatrice earthquake, the 2017 Puebla-Morelos earthquake, the 2017 Sarpol-e-Zahab earthquake, and the 2018 Anchorage earthquake. I examine the influences of environmental and urban characteristics on co-seismic coherence change using Sentinel-1 imagery and compare the outcomes of various damage levels. I do not find consistent values of mean coherence change to distinguish levels of damage across the case studies, indicating coherence change values vary with location, environment, and damage pattern. However, this method of damage mapping shows potential as a useful tool in earthquake emergency response, capable of quickly identifying localized areas of high damage in areas with low snow and vegetation cover. Given the large spatial coverage and relatively quick, low-cost acquisition of SAR imagery, this method could provide damage estimates for unsafe or remote regions or for areas unable to self-report damage. / Graduate
4

Bridge Design for Earthquake Fault Crossings – Synthesis of Design Issues and Strategies

Rodriguez, Osmar 01 March 2012 (has links) (PDF)
This research evaluates the seismic demands for a three-span curved bridge crossing fault-rupture zones. Two approximate procedures which have been proved adequate for ordinary straight bridges crossing fault-rupture zones, i.e., the fault-rupture response spectrum analysis (FR-RSA) procedure and the fault-rupture linear static analysis (FR-LSA) procedure, were considered in this investigation. These two procedures estimate the seismic demands by superposing the peak values of quasi-static and dynamic bridge responses. The peak quasi-static response in both methods is computed by nonlinear static analysis of the bridge under the ground displacement offset associated with fault-rupture. In FR-RSA and FR-LSA, the peak dynamic responses are respectively estimated from combination of the peak modal responses using the complete-quadratic-combination rule and the linear static analysis of the bridge under appropriate equivalent seismic forces. The results from the two approximate procedures were compared to those obtained from the nonlinear response history analysis (RHA) which is more rigorous but may be too onerous for seismic demand evaluation. It is shown that the FR-RSA and FR-LSA procedures which require less modeling and analysis efforts provide reasonable seismic demand estimates for practical applications.
5

Implementation and Validation of Fault-Rupture Response Spectrum Analysis Procedure in CSiBridge for Bridges Crossing Earthquake Fault Ruptures

Tures, Jennifer Evelyn 01 December 2012 (has links) (PDF)
This thesis evaluates the application of a simplified analysis procedure as implemented in version 16 of CSiBridgeTM for design of bridges crossing earthquake fault ruptures. The fault-rupture response spectrum analysis (FR-RSA) approximation method has been proved adequate for both straight and curved ordinary bridges, but lacked a comfortable interface to accommodate the method users. Computers and Structure, Inc. has implemented the FR-RSA procedure into CSiBridgeTM, a user-friendly integrated 3-D bridge design software, as an added seismic design feature. By combining the response of the bridge due to the quasi-static displacement from the fault strike-slip rupture and the pseudo-dynamic displacement from the earthquake response spectrum analysis, a combined seismic demand is approximated using the software. The CSiBridgeTM bridge model creation process and application of FR-RSA as the Caltrans Fault Crossing Seismic Design Request is explained and evaluated in this thesis. In order to validate the implementation of FR-RSA in CSiBridgeTM v.16, the bridge demands for a three span and a four span curved bridge crossing earthquake fault rupture zones from the analytical models developed in Open System for Earthquake Engineering Simulation (OpenSees) and CSiBridgeTM v.16 are compared and discussed. It was found that the displacement demands from the abutments and bents were comparable from the two programs, supporting the correct application of the approximation method. This thesis also presents recommendations for improving the analysis function of CSiBridgeTM v.16 for bridges crossing fault ruptures.

Page generated in 0.0385 seconds