• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The vertical displacement in the main fault of the Balcones Fault system at a point west of the city of Austin, Texas

Damon, Henry Gordon 09 June 2009 (has links)
Not available / text / text
2

Field experiments for fracture characterization: studies of seismic anisotropy and tracer imaging with GPR / Studies of seismic anisotropy and tracer imaging with GPR

Bonal, Nedra Danielle, 1975- 28 August 2008 (has links)
Knowledge of fracture orientation and density is significant for reservoir and aquifer characterization. In this study, field experiments are designed to estimate fracture parameters in situ from seismic and GPR (radar) data. The seismic experiment estimates parameters of orientation, density, and filling material. The GPR experiment estimates channel flow geometry and aperture. In the seismic study, lines of 2D data are acquired in a vertically fractured limestone at three different azimuths to look for differences in seismic velocities. A sledgehammer, vertical source and a multicomponent, Vibroseis source are used with multicomponent receivers. Acquisition parameters of frequency, receiver spacing and source-to-receiver offset are varied. The entire suite of seismic body waves and Rayleigh waves is analyzed to characterize the subsurface. Alford rotations are used to determine fracture orientation and demonstrate good results when geophone orientation is taken into account. Results indicate that seismic anisotropy is caused by regional faulting. Average fracture density of less than 5% and water table depth estimates are consistent with field observations. Groundwater flow direction has been observed by others to cross the fault trend and is subparallel to a secondary fracture set. In this study, seismic anisotropy appears unrelated to this secondary fracture set. Vp/Vs and Poisson's ratio values indicate a dolomite lithology. Sledgehammer and Vibroseis data provide consistent results. In the GPR experiment, reflection profiles are acquired through common-offset profiling perpendicular to the dominant flow direction. High frequency waves are used to delineate fluid flow paths through a subhorizontal fracture and observe tracer channeling. Channeling of flow is expected to control solute transport. Changes in radar signal are quantitatively associated with changes in fracture filling material from an innovative method using correlation coefficients. Mapping these changes throughout the survey area reveals the geometry of the flow path of each injected liquid. The tracer is found to be concentrated in the center of the survey area where fracture apertures are large. This demonstrates that spatial variations in concentration are controlled by fluid channel geometry.
3

Structural evolution of the Warwick Hills, Marathon Basin, West Texas

Coley, Katharine Lancaster, 1956- 14 April 2011 (has links)
A detailed structural analysis was conducted of the Warwick Hills at the northeast tip of the doubly-plunging Dagger Flat anticlinorium, Marathon Basin, west Texas. Field work delineated a folded duplex structure composed of three horses. Thrust transport was towards the northwest and resulted in a hinterland-dipping duplex. Initial thrusting In the Warwick Hills shortened the area by 2.2:1 (54%). Post-thrusting, the duplex underwent nearly isoclinal folding creating two anticlines and a syncline, second-order folds to the Dagger Flat anticlinoium. Folding combined with thrusting brought the total shortening of the rock package to 6.5:1 (85%). Earlier estimates gave a shortening for the Warwick Hills of 3:1. Finally, the folded duplex was extended by oblique tear faulting that offset the folded thrusts accommodating extension of the major folds in a northeast direction. These tear faults occurred post-plunging of the folds and were the last deformational movements that affected the Warwick Hills. The Ordovician Maravillas and Devonian Caballos Formations acted in the Warwick Hills as a structurally competent couplet. Addition or subtraction of this couplet, or units in this couplet, controlled the location of the major and minor thrusts, the style and shape of folds, and the location of the fold hinges. Bounding the couplet are incompetent shales of the Ordovician Woods Hollow and the Mississippian Tesnus Formations. Thrusts in the Warwick Hills duplex have a basal décollement in the Woods Hollow shale and ramp up through the Maravillas/Caballos couplet with an upper décollement in the Tesnus shale. The entire duplex was primarily folded by flexural slip (i.e. concentric folds) as evidenced by slickensides oriented parallel to bedding and perpendicular to fold axes, the constant thickness of the competent layers and the change in fold shape with depth. Fold wavelength, as determined from the couplet in the lowest thrust sheet, averages ~1,300 m and the average fold axis for the Warwick Hills, as determined stereographically, plunges ~54° N90°E. Shale in the Woods Hollow and Tesnus Formations bounding the couplet, flowed passively during folding into the cavities that were created by the bending of the more competent units. Lower and upper boundaries of disharmonic folding developed in the Woods Hollow and Tesnus Formations respectively. Unique to this area when compared to the rest of the anticlinorium are the presence of tightly folded thrusts and steep east-trending fold axes. The anticlinorium plunges in the Warwick Hills because it drapes off a down-to-the-northeast basement fault. Folds were "dragged" or diverted to the east during thrusting of the duplex over this transversely-oriented paleotopographic fault scarp, or were diverted subsequent to thrusting of the duplex by strike-slip movements at depth along the basement fault. / text

Page generated in 0.0379 seconds