• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterizing Mechanisms of Clay Gouge Formation and Implications for Permeability, Moab Fault, Utah

Anyamele, Nwachukwu January 2010 (has links)
Clay composition and content profoundly impacts the strength and sealing capacity of a fault zone, reducing frictional resistance to sliding and permeability by as much as 7 orders of magnitude. Previous approaches, including the Shale Gouge Ratio (SGR) and Shale Smear Potential (SSP), have been used to understand and predict the clay content of fault zones. These models are largely limited to mechanical incorporation of detrital clays. This hypothesis stems from field observations of clay gouge and the smearing and associated attenuation of clay-rich shale beds offset by the fault. Recently, diagenesis has been recognized as an additional critical mechanism of clay enrichment In fault zones. My study investigates the relative contributions of both mechanisms of clay enrichment focusing on the implications for fault permeability and strength through structural and elemental mapping of the Moab Fault in Utah. Detailed mapping at Six sites along the Moab Fault in southeast Utah, revealed distinct structural deformation zones as defined by structures and distribution of normally faulted sandstone and shale including: (1) layers of clay-rich gouge separated by slip surfaces that include isolated sandstone breccia; (2) an inner smeared shale adjacent to the gouge showing increasing bed parallel shearing and resulting boudinage closer to the fault, and an outer smear with little shearing but rotation of beds; (3) faulted sandstone hosting deformation bands, slip surfaces, and intersections, joints and veins in locations near relays. Fluid assisted alteration was revealed by a combination of high spatial resolution scan-lines on outcrops element composition and measured sections of measured with a portable X-Ray Fluorescence device. Results to date include: (1) elemental concentrations relative to immobile species (such as Ti) and by structural zone show that Ca, Sr, Rb are preferentially enriched and/or depleted in the fault core, (2) the fault core hosts the greatest alteration; (3) a progressively more extensive and greater density of bed parallel slip surfaces from protolith to gouge where slip surfaces are associated with mixing and disaggregation; (4) stable concentration of elements associated with illite such as K, occurs preferentially in the gouge; (5) localized enrichment and/or depletion reveals solution mass transfer contributed to formation of the fault core and to a lesser extent the damage zones. Elemental mapping clearly demonstrates a compositional evolution of the fault core, and in particular the clay gouge, that cannot be accounted for by mixing of protolithic formations. Thus, observations from elemental mapping show that solution mass transfer influences the formation of clay gouge in the fault zone, in addition to mechanical incorporation of detrital clays from the surrounding protoliths. / Earth and Environmental Science
2

THE ODD-AXIS MODEL: ORTHORHOMBIC FAULT PATTERNS AND THREE-DIMENSIONAL STRAIN FIELDS

Krantz, Robert Warren, Krantz, Robert Warren January 1986 (has links)
Recent observations have highlighted the shortcomings of traditional thinking about faults and fault patterns. The slip model of faulting, developed by Ze'ev Reches, suggests that four sets of faults, arranged in orthorhombic symmetry about the principal strain axes, can accommodate general, three-dimensional strain. Classic conjugate faults are simply a special case of plane strain. Careful analysis of orthorhombic fault patterns and the tenets of the slip model has led to the development of a practical method for decoding the strain significance of fault systems developed in three-dimensional strain fields. The methods are implicit in a model here called the odd-axis model. This new model calls special attention to the odd axis: the one principal strain with sign opposite the other two, assuming a constant volume deformation. Odd-axis medel equations relate fault set geometry to principal strain magnitudes or ratios, the internal friction angle, φ, and the ratio of average fault slip to average spacing between faults of the same set, R. For systems where R < 0.1, the three principal strain ratios are given by tan²α, -sin²α, and -COS²α, where α is the strike of the fault set(s) measured in the plane perpendicular to the odd axis. The model also predicts slip vector orientations as functions of principal strain ratios and orientations. The kinematic implications of the odd-axis model are compatible with those of the slip model. In this first quantitative field test, both fault models are applied to the Chimney Rock array, a system of orthorhombic faults in the northern San Rafael Swell of central Utah. The odd-axis model uses fault plane and slip vector data from Chimney Rock to predict principal strain ratios (ε(y)/ε(x), ε(y)/ε(z), and ε(x)/ε(z)) of .20, -.16, and -.84. These compare extremely well with the observed values, based on fault separation measurements, of .17, -.15, and -.85. The value of ε(y)/ε(z) predicted by the slip model, -.16, matches exactly the value predicted by the odd-axis model and nearly matches the observed value, which is -.15. The success of the field test at Chimney Rock, and the conceptual agreement of both models, suggest that the new theory can accurately relate orthorhombic fault geometries and three-dimensional strain fields. Furthermore, the results underscore how important it is for geologists to recognize the sensitivity of fault geometry and kinematics to three-dimensional strain.
3

Faulting and basin geometry beneath the Great Salt Lake: implications for basin evolution and cenozoic extension

Mohapatra, Gopal Krishna, 1968- January 1996 (has links)
No description available.

Page generated in 0.0553 seconds