Spelling suggestions: "subject:"faunal assemblages"" "subject:"caunal assemblages""
1 |
Digital refit analysis of anthropogenically fragmented equine bone from the Schoningen 13 II-4 Deposits, GermanyHolland, Andrew D., Hutson, J.M., Villaluenga, A., Sparrow, Thomas, Murgatroyd, Andrew, García-Moreno, A., Turner, E., Evans, Adrian A., Gaudzinski-Windheuser, S., Wilson, Andrew S. 19 August 2022 (has links)
No / Excavation of the Schöningen lignite mine in Germany produced the earliest examples of hunting spears to date, and a large assemblage of anthropogenically fragmented faunal remains deposited in anaerobic lacustrine silt sediments during the Middle Pleistocene. The exceptional preservation of the assemblage makes the site of prime importance to our understanding of the behavioural, social and economic patterns of hominins in the Lower Palaeolithic of the Middle Pleistocene in Europe. This chapter describes the digital refitting analysis, part of the AHRC-funded Fragmented Heritage project, undertaken to address the logistical challenge posed by manually comparing individual bone fragments within the assemblage to identify refitting sequences. This logistical refit challenge uses the Schöningen assemblage to investigate the effectiveness of a digital refit approach to the analysis of large faunal assemblages. We describe the process from digitisation of the bone fragments by macro structured light scanning, digital segmentation of refitting surfaces, and digital comparison of the refitting and non-refitting surfaces to produce statistical matches. We discuss how taphonomic data can be visualised from the analysis and can be used to inform interpretation of the taphonomic histories of these faunal remains and the human behaviours associated with the formation of this unique assemblage. / The research was funded through an AHRC doctoral award as part of the AHRC Digital Transformations funded Theme Large Grant Fragmented Heritage (AH/L00688X/1) and through in-kind contributions from MONREPOS.
|
Page generated in 0.0412 seconds