• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Planar Hall Effect : Detection of Ultra Low Magnetic Fields and a Study of Stochasticity in Magnetization Reversal

Roy, Arnab January 2015 (has links) (PDF)
In the present thesis, we have explored multiple aspects concerning the stochasticity of magnetic domain wall motion during magnetization reversal, all of which originated from our initial study of magnetic field sensing using planar Hall effect. Magnetic field sensors occupy a very important and indispensable position in modern technology. They can be found everywhere, from cellphones to automobiles, electric motors to computer hard disks. At present there are several emerging areas of technology, including biotechnology, which require magnetic field sensors which are at the same time simple to use, highly sensitive, robust under environmental conditions and sufficiently low cost to be deployed on a large scale. Magnetic field sensing using planar Hall effect is one such feasible technology, which we have explored in the course of the thesis. The work was subsequently expanded to cover some fundamental aspects of the stochasticity of domain wall motion, studied with planar Hall effect, which forms the main body of work in the present study. In Chapter 1, we give an introduction to the phenomenology of planar Hall effect, which is the most important measurement technique used for all the subsequent studies. Some early calculations, which had first led to the understanding of anisotropic magnetoresistance and planar Hall effect as being caused by spin-orbit interaction are discussed. In Chapter 2, we discuss briefly the experimental techniques used in the present study for sample growth and fabrication, structural and magnetic characterization, and measurement. We discuss pulsed laser ablation, which is the main technique used for our sample growth. Particular emphasis is given to the instrumentation that was carried out in-house for MOKE and low field magnetotransport (AMR and PHE) measurement. This includes an attempt at domain wall imaging through MOKE microscopy. Some of the standard equipments used for this work, such as the SQUID magnetometer and the acsusceptometer are also discussed in detail. In Chapter 3 we discuss our work on planar Hall sensors that led to the fabrication of a device with a very simple architecture, having transfer characteristics of 650V/A.T in a range of _2Oe. The sensing material was permalloy (Ni81Fe19), and the value had been obtained without using an exchange biased pinning layer. Field trials showed that the devices were capable of geomagnetic field sensing, as well as vehicle detection by sensing the anomaly in Earth's magnetic field caused by their motion. Its estimated detection threshold of 2.5nT made it well suited for several other applications needing high sensitivity in a small area, the most prominent of them being the detection of macromolecules of bio-medical significance. Chapter 4: The work on Barkhausen noise was prompted by reproducibility problems faced during the sensor construction, both between devices as well as within the same device. Study of the stochastic properties led us to the conclusion that the devices could be grouped into two classes: one where the magnetization reversal occurred in a single step, and the other where it took a 0staircase0 like path with multiple steps. This led us to simulations of Barkhausen noise using nucleation models like the RFIM whence it became apparent that the two different groups of samples could be mapped into two regimes of the RFIM distinguished by their magnetization reversal mode. In the RFIM, the nature of the hysteresis loop depends on the degree of disorder, with a crossover happening from single-step switching to multi-step switching at a critical disorder level. Appropriate changes also appear in the Barkhausen noise statistics due to this disorder-induced crossover. By studying the Barkhausen noise statistics for our permalloy samples and comparing them with simulations of the RFIM, we found nearly exact correspondence between the two experimental groups with the two classes resulting from crossing the critical disorder. What remained was to quantify the 0disorder0 level of our samples, which was done through XRD, residual resistivity and a study of electron-electron interaction effects in the resistivity. All these studies led to the conclusion that the samples reversing in multiple steps were more 0defective0 than the other group, at par with the model predictions. This completed the picture with respect to the modeling of the noise. In experiments, it was found that a high rate of film deposition yielded less 0defective0 samples, which severed as an important input for the sensor construction. These results can be viewed from a somewhat broader perspective if we consider the present scenario in the experimental study of Barkhausen noise, or crackling noise in general. Two classes of models exist for such phenomena: front propagation models and nucleation models. Both appear to be very successful when it comes to experiments with bulk materials, while the comparison with experiments on thin films is rather disappointing. It is still not clear whether the models are at fault or the experiments themselves. Through our study, we could demonstrate that there can be considerable variation in the Barkhausen noise character of the same material deposited in the same way, and what was important was the degree of order at the microscopic level. This may be a relevant factor when experimental papers report non-universality of Barkhausen noise in thin films, which can now be interpreted as either insufficient defects or a sample area too small for the study. Chapter 5: Defects in a sample are not the only cause for stochastic behavior during magnetization. In most cases, random thermal 0events0 are also an important factor determining the path to magnetization reversal, which was also true for our permalloy samples. We studied the distribution of the external fields at which magnetization reversal took place in our samples, and tried to explain it in terms of the popular Neel-Brown model of thermal excitation over the anisotropy barrier. The analysis showed that even though the coercivity behaved 0correctly0 in terms of the model predictions, the behavior of the distribution width was anomalous. Such anomalies were common in the literature on switching field distributions, but there seemed to be no unified explanation, with different authors coming up with their own 0exotic0 explanations. We decided to investigate the simplest situations that could result in such a behavior, and through some model-based calculations, came to the conclusion that one of the causes of the anomalies could be the different magnitudes of barrier heights/anisotropy fields experienced by the magnetic domain wall when the reversal occurs along different paths. Though an exact match for the behavior of the distribution width could not be obtained, the extended Neel-Brown model was able to produce qualitative agreement. Chapter 6 contains a study of some interesting 0geometrical0 effects on Barkhausen noise of iron thin films. By rotating the applied magnetic field out-of plane, we could observe the same single-step to multi-step crossover in hysteresis loop nature that was brought about by varying disorder in Chapter 4. We could explain this through simulations of a random anisotropy Ising model, which, apart from exhibiting the usual disorder induced crossover, showed a transition from sub-critical to critical hysteresis loops when the external field direction was rotated away form the average anisotropy direction. Once again, simulation and experiment showed very good agreement in terms of the qualitative behavior. In the second part of this chapter, a study of exchange biased Fe-FeMn system was carried out, where it was observed that the reversal mode has been changed from domain wall motion to coherent rotation. Barkhausen noise was also suppressed. Though many single-domain models existed for this type of reversal, our system was not found to be strictly compatible with them. The disagreement was with regard to the nature of the hysteresis, which, if present, had to be a single step process for a single domain model. The disagreement was naturally attributed to interaction with the nearby magnetic moments, to verify which, simulations were done with a simplified micromagnetic code, which produced excellent agreement with experiment. In Chapter 7, we have studied the temporal properties of Barkhausen avalanches, to compare the duration distributions with simulation. We had used a permalloy sample that was sub-critical according to avalanche size distributions, and our measurement was based on magneto-optic Kerr effect. We measured duration distributions which showed a similar manifestation of finite-size effects as were shown by the size distributions. The power law exponent was calculated, which was deemed 0reasonable0 upon comparison simulations of the sub-critical RFIM. Appendix A contains a study of high-field magnetoresistance of permalloy, which shows that the dominant contribution to magnetoresistance is the suppression of electron-magnon scattering. An interesting correlation is observed between the magnetization of samples and an exchange stiffness parameter d1, that was extracted from magnetoresistance measurements. Here we also re-visit our earlier observation of permalloy thin films possessing a resistance minimum at low temperature. The origin of this minimum is attributed to electron-electron interaction. Appendix B contains the source codes for most of the important programs used for simulation and data analysis. The programs are written in MATLAB and FORTRAN 95. LabView programs used for data acquisition and analysis are not included due to space requirements to display their graphical source codes. Appendix C discusses the studies on a disordered rare-earth oxide LaMnO3. The re-entrant glassy phase is characterized with ac susceptibility and magnetization measurements to extract information about the nature of interactions between the magnetic 0macrospins0 in the system. Appendix D deals with electron scattering experiments performed with spinpolarized electrons (SPLEED) from clean metal surfaces in UHV. A study of the scattering cross sections as a function of energy and scattering angle provides information about spin-orbit and exchange interactions of the electrons with the surface atoms, and can answer important questions pertaining to the electronic and magnetic structure of surfaces. In the course of this study, planar Hall effect is seen to emerge as a powerful tool to study the magnetic state of a thin film, so that it is interesting to apply it to thin films of other materials such as oxides, where magnetization noise studies are next to nonexistent. What also emerged is that there is still a lot of richness present in the details of supposedly well-understood magnetization phenomena, some of which we have explored in this thesis in the context of stochastic magnetization processes.
2

Structure, Microstructure and Magnetic Properties of Fe-Ga and R-Fe based Magnetostrictive Thin Films

Basumatary, Himalay January 2016 (has links) (PDF)
Magnetostrictive materials belong to an important class of smart magnetic materials which have potential applications as ultrasonic transducers, sensors, actuators, delay lines, energy harvesting devices etc. Although, magnetostrictive property is exhibited by almost all ferro and ferrimagnetic materials, the R-Fe type (R represents rare earth elements) intermetallic compounds display maximum promise owing to the large magnetostriction exhibited by them at ambient temperature. Among the several R-Fe type compounds, Tb-Fe and Sm-Fe alloys are found to exhibit maximum room temperature positive and negative magnetostriction respectively. Recently, Fe-Ga based alloys have gained significant interest as newly emerging magnetostrictive material due to a good combination of magnetic and mechanical properties. These magnetostrictive materials in thin film form are of interests for several researchers both from fundamental and applied perspectives. Currently, many researchers are exploring the possibility of using magnetostrictive thin films in micro- and nano-electromechanical systems (MEMS and NEMS). Three material systems viz. Fe-Ga, Tb-Fe and Sm-Fe in thin film form have been chosen for our investigations. DC magnetron sputtering and e-beam evaporation techniques were used for deposition of these thin films on Si (100) substrates. Several aspects such as evolution of microstructure, film surface morphology, structure and change in film composition with different processing conditions were investigated in detail, as the existing literature could not provide a clear insight. Further, detailed magnetic characterizations of these films were carried out and established a process-structure-property correlation. The thesis is divided into seven chapters. The first chapter presents a brief introduction of magnetostrictive phenomena and the physics behind its origin. A brief history of evolution of magnetostrictive materials with superior properties is also brought out. Introduction to the material systems considered for the present study has also been presented. Discussions on various aspects like crystal structures, magnetic properties, and phase diagrams of these material systems are also included in this chapter. Magnetostriction in thin films and its importance in current technological applications are discussed in short. Further, a summary of existing literature on thin films of these materials has been narrated to highlight the perspective of the work done in subsequent chapters. In addition to this, a clear picture of the grey area for further investigations has been provided. Formulation of detailed scope of work for this study is also provided in this chapter. Details of different experimental techniques used in this study for deposition and characterization of these films are given in chapter 2. In the third chapter of the thesis a detailed study on the structural, microstructural and magnetic properties of Fe-Ga films deposited using dc magnetron sputtering technique are presented. The effect of sputtering parameters such as (i) Ar pressure, (ii) sputtering power, (iii) substrate temperature and (iv) deposition time/film thickness on the magnetic properties of the films are discussed in detail. All the films are found to be polycrystalline in nature with A2 type structure as evidenced from grazing incidence X-ray diffraction (GIXRD) and transmission electron microscope (TEM) studies. Surface morphology of the films are found to be affected with processing conditions considerably. Thermomagnetic behaviour of the films studied using a Superconducting Quantum Interference Device (SQUID) magnetometer under zero field cooled (ZFC) and field cooled (FC) conditions are also presented. The sputtering parameters are also found to influence the magnetic properties of the films through modifications in microstructure, surface morphology and film compositions. Irrespective of the sputtering parameters, room temperature (RT) deposited Fe-Ga films are found to exhibit large magnetic coercively and large saturation magnetic field as compared to the bulk alloy of similar compositions which are not desirable for micromagnetic device applications. A significant improvement in the magnetic properties of the films was obtained in the films deposited at higher substrate temperatures and is correlated with modifications in grain size and film surface roughness. These films are also found to exhibit better magnetostriction than the RT deposited films. Further, the magnetic properties of Fe-Ga films as a function of film thickness in the range 2 – 480 nm are also presented. The nature of variation of coercively with film thickness was correlated with grain size effect and explained successfully with the help of random anisotropy model. In the fourth chapter, studies on the microstructural and magnetic properties of Tb-Fe films were presented. It was reported earlier that TbxFe100-x films exhibit in-plane magnetic anisotropy for the films with x > 42 at.% of Tb and out-of-plane anisotropy for the composition 28 < x < 42. Presence of these anisotropies is technologically important for different applications. We have studied the magnetic properties of Tb-Fe films in these two composition range. TbxFe100-x films with 54  x  59 were prepared using dc magnetron sputtering technique under varying Ar pressure and sputtering power and the details about microstructural and magnetic properties are presented in this chapter. All the films are found to be amorphous in nature. While the composition of the film is found to remain constant with sputtering power, the Fe concentration in the film is found to be depleted with increase in Ar pressure. Magnetic properties are found to change from superparamagnetic to ferromagnetic behaviour with increase in sputtering power. Curie temperature of the films are found to be low (below RT) and is explained based on sperimagnetic ordering of magnetic sub-lattices. The perpendicular magnetic anisotropy (PMA) or out-of-plane anisotropy behaviour of Tb-Fe films were not studied in detail as a function of film thickness. We have successfully prepared TbxFe100-x films with 29  x  40 using e-beam evaporation technique using alloy target composition of TbFe in order to study the PMA behaviour as a function of film thickness. The thickness of the films was varied from 50 to 800 nm. All the films are found to be amorphous and columnar growth structure with fine channels of voids are observed from the TEM studies. Detailed magnetization and thermomagnetic measurements were carried out using SQUID magnetometer at different temperatures. The out-of-plane magnetic coercivity of the films was found to increase with film thickness and then decreases with further increase in thickness. Maximum coercivity of ~ 20 kOe has been obtained for the 400 nm thick film. Magnetic domain patterns were studied using magnetic force microscopy (MFM) technique and the observed magnetic properties are correlated with domain pattern and microstructures. Although there are several reports on device applications of Sm-Fe thin films which exhibit negative magnetostriction, a comprehensive study on the effect of different process parameters on the magnetic properties and its correlation with structure and microstructure is still elusive. Hence, Sm-Fe films were deposited on Si (100) substrate using dc magnetron sputtering technique under varying Ar pressure and sputtering power. Effect of these parameters on the microstructural and magnetic properties of the films was studied in detail and is presented in chapter 5. The curie temperature of the films was found to increase with increase in sputtering power and Ar pressure. This was attributed to increase in film thickness and size of islands (atomic clusters). Coercivity as low as 30 Oe has been achieved in the film deposited at 15 mTorr Ar pressure. The Curie temperature for the films deposited at higher Ar pressure (10 and 15 mTorr) are found to be above RT. Maximum saturation magnetostriction of ~ - 390 -strains has been achieved in the film deposited at 15 mTorr Ar pressure. Rapid thermal processing (RTP) experiments were also carried out to increase the magnetic ordering in the films deposited at low Ar pressure (5 mTorr) by imparting structural ordering. Large improvement in magnetization and Curie temperature of the film was observed after RTA. However, this could be attributed to the formation of nano-crystalline Fe phase as evidenced from the TEM studies and thermomagnetic measurements. An overall summary of the experimental results has been presented in chapter 6. The scope of work for further study in future has also been highlighted in chapter 7.
3

Investigations Of Magnetic Anisotropy In Ferromagnetic Thin Films And Its Applications

Sakshath, S 07 1900 (has links) (PDF)
Physical systems having dimensions smaller than, or of the same order of magnitude as, the characteristic length scale relevant to a physical property are referred to as mesoscopic physical systems. Due to the dimensions of the system, several physical properties get affected and this could reveal interesting physics which would other-wise have not been apparent. In the recent times, a lot interesting applications have resulted from such studies. The fundamental length scale in ferromagnetic systems is the exchange length. It is related to the magnetic anisotropy and exchange constants. Other length scales such as the size of a magnetic domain or a domain wall depends on the minimisation of energy associated with this length scale along with other factors such as zeeman energy, magnetostatic, magnetoelastic and anisotropy energies. Ultrathin magnetic films have thickness smaller than the exchange length. In this thickness regime, the surface of the film plays an important role. The magnetic anisotropy energy would get a significant contribution from the surface of the film and if it dominates over the volume contribution, would eventually lead to magnetisation pointing out of the plane of the film as opposed to imposition of demagnetising fields. Examples for such cases are FePt(L10 phase) films and Co(0001) films. Such films are important in memory applications where perpendicularly magnetised recording media are desired. When the lateral dimensions of thin films are reduced, demagnetising fields become even more important. Depending on the anisotropy in the system, certain domain patterns get stabilised in the final structure. This has led to important applications in the field of magnonics. The use of angular momentum transfer from spin polarised electrons to change the configuration of magnetisation of structured magnetic films has led to interesting memory and oscillator applications. The underlying physical parameter that needs to be controlled and carefully studied in all these cases is the magnetic anisotropy. It is favourable to have uniaxial magnetic anisotropy for memory and oscillators. This thesis chiefly deals with Fe/GaAs(001) systems. The choice of the physical system follows interest in spintronics where spin injection is desired into a semiconductor from a ferromagnet. The thesis is organized into chapters as follows. Chapter 1 attempts to introduce the reader to some of the basic concepts of mag-netism and some magnetic phenomena. The characteristic nature of a ferro-magnetic material is its spontaneous magnetisation due to long range ordering below the Curie temperature. But the moment is coupled, through some in-teractions, to spatial co-ordinates which leads to spatial variation of magnetic properties. Such interactions are also responsible for the formation of magnetic domains. The spatial variation of magnetic properties within a ferromagnet is called magnetic anisotropy. A major part of the thesis deals with the study of magnetic anisotropy of Fe thin films grown on GaAs(001) substrates. For a better understanding, the structure of the semiconductor is introduced first before discussing the influence of the structure of GaAs on the growth of Fe. A short description of the uniaxial magnetic anisotropy in Fe films is given before starting on an exploration of some possible reasons for it. Concepts of ferromagnetic resonance, spin torque effect and micromagnetic simulations are given. Chapter 2 gives a brief description of some of the experimental apparatus that was setup during the course of the research along with an overview of the differ-ent sample preparation and characterisation techniques used. The chapter is organised according to the general functionality of the techniques. Some con-cepts such as the use of low energy electrons, nanostructuring etc are introduced along with the corresponding techniques since it is best understood along with the instrumentation. Chapter 3 reports some surprising findings about the in-plane magnetic anisotropy in Fe films grown on an MgO underlayer. Until now, it has been understood that such films should exhibit only a four-fold magnetic anisotropy within the plane of the film. But the Fe/MgO/GaAs(001) films studied here exhibited an in-plane uniaxial magnetic anisotropy(IPUMA). IPUMA is dominant upto about 25 ML of Fe in case of Fe/MgO/GaAs(001) films whereas, in Fe/GaAs(001) films it is dominant only upto about 15 ML. Thus, the presence of the MgO film even appeared to enhance the uniaxial anisotropy as compared to the Fe/GaAs(001) films. In the ferromagnetic resonance (FMR) spectra, as many as three peaks were observed in Fe/GaAs(001) films of thickness 50 ML close to the hard axis of magnetisation. This means that three could be three energy minima possibly due to a competition between the anisotropies involved. Chapter 4 elaborates the investigations of the effect of orientation and doping con-centration of the GaAs substrate on the magnetic anisotropy of Fe/GaAs(001) films. It is found that doping the substrate (n type) reduces the strength of the IPUMA in Fe/GaAs films. In the wake of the long-standing debate of electronic structure v/s stress as the origin of the IPUMA in Ferromagnet/Semiconductor films, this result is important because it implies that the electronic structure of the Fe/GaAs interface influences the magnetic anisotropy. But stress, as a cause of IPUMA cannot be ruled out. The influence of deposition techniques on magnetic anisotropy is also investigated. Chapter 5 presents a way of manipulating magnetic anisotropy, and hence mag-netisation dynamics, by nanostructuring of epitaxial Fe films. It is based on the property that magnetic anisotropy of Fe films is thickness dependent. It is demonstrated that using techniques of nanostructuring, a 2 dimensional mag-netic system with controllable variation of local magnetic anisotropy is created. Such a system could be a potential magnonic crystal. chapter 6 demonstrates the proof of concept of a new memory device where memory is stored in the magnetic domain configuration of a ring in relation to that of a nano-wire. Switching between the memory states is acheived through spin trasfer torque of an electric current passing through the device, whereas read-out of the memory state is through the measurement of resistance of the device. Devices are made using NiFe and Co; it is seen that the behaviour of the devices can be explained taking into account the anisotropic magnetoresistance of the material used. Finally, the various results are summarised and a broad outlook is given. Some possible future research related to the topics dealt within this thesis is discussed.

Page generated in 0.0539 seconds