• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetic Modeling Of The Samli (balikesir) Iron Deposit

Yilmazer, Erkan 01 March 2012 (has links) (PDF)
Samli Fe-oxide (+Cu&plusmn / Au) deposit is hosted by Samli pluton and rocks of Karakaya Complex in western Anatolia. The pluton consists of both mafic and felsic phases showing magma mixing textures. 40Ar/39Ar geochronology yielded an age range of 23.2&plusmn / 0.5 to 22.42&plusmn / 0.11 Ma for the Samli pluton, overlapping with 40Ar/39Ar age of 22.33&plusmn / 0.59 Ma and U-Pb age of 23.34&plusmn / 0.19 Ma from alterations. Sr-Nd isotope data are suggestive of a metasomatized subcontinental lithospheric mantle (SCLM) source for the magma. Alteration-mineralization pattern is defined by a series of overlapping halos characterized by sodic-calcic (plagioclase-pyroxene&plusmn / scapolite), calcic (garnet-pyroxene&plusmn / epidote), potassic (biotite+magnetite+chalcopyrite), hematite-limonite, and late stage (chalcedony-calcite+native Cu) alterations. Stable (&delta / 18O, &delta / 34S) and radiogenic (87Sr/86Sr,143Nd/144Nd) isotope compositions suggest a magmatic source for the fluids responsible for alteration-mineralization. Given the spatial-temporal association of alteration- mineralization with magmatic rocks, the hydrothermal system that controls mineralization in Samli appears to be linked with emplacement and cooling of Samli pluton. Samli Fe-oxide (+Cu&plusmn / Au) deposit has features characteristic for both skarn- and Iron-Oxide-Copper-Gold (IOCG) type deposits. The spatial and temporal association with a porphyritic intrusion, widespread calc-silicate assemblage, metal content (abundant Fe-oxide with high copper content) are similar to calcic Fe-Cu skarns, whereas low-Ti (&le / 0.05% TiO2) magnetite/hematite, low-S sulfides (chalcopyrite&gt / pyrite), high Cu (up to 6.78%) and moderate Au (up to 8.82 ppm) grades, local structural control in alteration-mineralization, and the derivation of the causative magma from a SCLM resembles the features pertinent to IOCG type mineralization. Therefore, Samli deposit is defined as a skarn type Fe-Cu mineralization with a potential for IOCG type deposit.

Page generated in 0.0605 seconds