Spelling suggestions: "subject:"feature byelection algorithm"" "subject:"feature byelection allgorithm""
1 |
Optimisation du test de production de circuits analogiques et RF par des techniques de modélisation statistique / Optimisation of the production test of analog and RF circuit using statistical modeling techniquesAkkouche, Nourredine 09 September 2011 (has links)
La part dû au test dans le coût de conception et de fabrication des circuits intégrés ne cesse de croître, d'où la nécessité d'optimiser cette étape devenue incontournable. Dans cette thèse, de nouvelles méthodes d'ordonnancement et de réduction du nombre de tests à effectuer sont proposées. La solution est un ordre des tests permettant de détecter au plus tôt les circuits défectueux, qui pourra aussi être utilisé pour éliminer les tests redondants. Ces méthodes de test sont basées sur la modélisation statistique du circuit sous test. Cette modélisation inclus plusieurs modèles paramétriques et non paramétrique permettant de s'adapté à tous les types de circuit. Une fois le modèle validé, les méthodes de test proposées génèrent un grand échantillon contenant des circuits défectueux. Ces derniers permettent une meilleure estimation des métriques de test, en particulier le taux de défauts. Sur la base de cette erreur, un ordonnancement des tests est construit en maximisant la détection des circuits défectueux au plus tôt. Avec peu de tests, la méthode de sélection et d'évaluation est utilisée pour obtenir l'ordre optimal des tests. Toutefois, avec des circuits contenant un grand nombre de tests, des heuristiques comme la méthode de décomposition, les algorithmes génétiques ou les méthodes de la recherche flottante sont utilisées pour approcher la solution optimale. / The share of test in the cost of design and manufacture of integrated circuits continues to grow, hence the need to optimize this step. In this thesis, new methods of test scheduling and reducing the number of tests are proposed. The solution is a sequence of tests for early identification of faulty circuits, which can also be used to eliminate redundant tests. These test methods are based on statistical modeling of the circuit under test. This model included several parametric and non-parametric models to adapt to all types of circuit. Once the model is validated, the suggested test methods generate a large sample containing defective circuits. These allow a better estimation of test metrics, particularly the defect level. Based on this error, a test scheduling is constructed by maximizing the detection of faulty circuits. With few tests, the Branch and Bound method is used to obtain the optimal order of tests. However, with circuits containing a large number of tests, heuristics such as decomposition method, genetic algorithms or floating search methods are used to approach the optimal solution.
|
2 |
Optimal water quality management in surface water systems and energy recovery in water distribution networksTelci, Ilker Tonguc 24 October 2012 (has links)
Two of the most important environmental challenges in the 21st century are to protect the quality of fresh water resources and to utilize renewable energy sources to lower greenhouse gas emissions. This study contributes to the solution of the first challenge by providing methodologies for optimal design of real-time water quality monitoring systems and interpretation of data supplied by the monitoring system to identify potential pollution sources in river networks. In this study, the optimal river water quality monitoring network design aspect of the overall monitoring program is addressed by a novel methodology for the analysis of this problem. In this analysis, the locations of sampling sites are determined such that the contaminant detection time is minimized for the river network while achieving maximum reliability for the monitoring system performance. The data collected from these monitoring stations can be used to identify contamination source locations. This study suggests a methodology that utilizes a classification routine which associates the observations on a contaminant spill with one or more of the candidate spill locations in the river network. This approach consists of a training step followed by a sequential elimination of the candidate spill locations which lead to the identification of potential spill locations. In order to contribute the solution of the second environmental challenge, this study suggests utilizing available excess energy in water distribution systems by providing a methodology for optimal design of energy recovery systems. The energy recovery in water distribution systems is possible by using micro hydroelectric turbines to harvest available excess energy inevitably produced to satisfy consumer demands and to maintain adequate pressures. In this study, an optimization approach for the design of energy recovery systems in water distribution networks is proposed. This methodology is based on finding the best locations for micro hydroelectric plants in the network to recover the excess energy. Due to the unsteady nature of flow in water distribution networks, the proposed methodology also determines optimum operation schedules for the micro turbines.
|
Page generated in 0.0885 seconds