Spelling suggestions: "subject:"feature space analysis"" "subject:"eature space analysis""
1 |
Exploração visual do espaço de características: uma abordagem para análise de imagens via projeção de dados multidimensionais / Visual feature space exploration: an approach to image analysis via multidimensional data projectionMachado, Bruno Brandoli 13 December 2010 (has links)
Sistemas para análise de imagens partem da premissa de que o conjunto de dados sob investigação está corretamente representado por características. Entretanto, definir quais características representam apropriadamente um conjunto de dados é uma tarefa desafiadora e exaustiva. Grande parte das técnicas de descrição existentes na literatura, especialmente quando os dados têm alta dimensionalidade, são baseadas puramente em medidas estatísticas ou abordagens baseadas em inteligência artificial, e normalmente são caixas-pretas para os usuários. A abordagem proposta nesta dissertação busca abrir esta caixa-preta por meio de representações visuais criadas pela técnica Multidimensional Classical Scaling, permitindo que usuários capturem interativamente a essência sobre a representatividade das características computadas de diferentes descritores. A abordagem é avaliada sobre seis conjuntos de imagens que contém texturas, imagens médicas e cenas naturais. Os experimentos mostram que, conforme a combinação de um conjunto de características melhora a qualidade da representação visual, a acurácia de classificação também melhora. A qualidade das representações é medida pelo índice da silhueta, superando problemas relacionados com a subjetividade de conclusões baseadas puramente em análise visual. Além disso, a capacidade de exploração visual do conjunto sob análise permite que usuários investiguem um dos maiores desafios em classificação de dados: a presença de variação intra-classe. Os resultados sugerem fortemente que esta abordagem pode ser empregada com sucesso como um guia para auxiliar especialistas a explorar, refinar e definir as características que representam apropriadamente um conjunto de imagens / Image analysis systems rely on the fact that the dataset under investigation is correctly represented by features. However, defining a set of features that properly represents a dataset is still a challenging and, in most cases, an exhausting task. Most of the available techniques, especially when a large number of features is considered, are based on purely quantitative statistical measures or approaches based on artificial intelligence, and normally are black-boxes to the user. The approach proposed here seeks to open this black-box by means of visual representations via Multidimensional Classical Scaling projection technique, enabling users to get insight about the meaning and representativeness of the features computed from different feature extraction algorithms and sets of parameters. This approach is evaluated over six image datasets that contains textures, medical images and outdoor scenes. The results show that, as the combination of sets of features and changes in parameters improves the quality of the visual representation, the accuracy of the classification for the computed features also improves. In order to reduce this subjectiveness, a measure called silhouette index, which was originally proposed to evaluate results of clustering algorithms, is employed. Moreover, the visual exploration of datasets under analysis enable users to investigate one of the greatest challenges in data classification: the presence of intra-class variation. The results strongly suggest that our approach can be successfully employed as a guidance to defining and understanding a set of features that properly represents an image dataset
|
2 |
Exploração visual do espaço de características: uma abordagem para análise de imagens via projeção de dados multidimensionais / Visual feature space exploration: an approach to image analysis via multidimensional data projectionBruno Brandoli Machado 13 December 2010 (has links)
Sistemas para análise de imagens partem da premissa de que o conjunto de dados sob investigação está corretamente representado por características. Entretanto, definir quais características representam apropriadamente um conjunto de dados é uma tarefa desafiadora e exaustiva. Grande parte das técnicas de descrição existentes na literatura, especialmente quando os dados têm alta dimensionalidade, são baseadas puramente em medidas estatísticas ou abordagens baseadas em inteligência artificial, e normalmente são caixas-pretas para os usuários. A abordagem proposta nesta dissertação busca abrir esta caixa-preta por meio de representações visuais criadas pela técnica Multidimensional Classical Scaling, permitindo que usuários capturem interativamente a essência sobre a representatividade das características computadas de diferentes descritores. A abordagem é avaliada sobre seis conjuntos de imagens que contém texturas, imagens médicas e cenas naturais. Os experimentos mostram que, conforme a combinação de um conjunto de características melhora a qualidade da representação visual, a acurácia de classificação também melhora. A qualidade das representações é medida pelo índice da silhueta, superando problemas relacionados com a subjetividade de conclusões baseadas puramente em análise visual. Além disso, a capacidade de exploração visual do conjunto sob análise permite que usuários investiguem um dos maiores desafios em classificação de dados: a presença de variação intra-classe. Os resultados sugerem fortemente que esta abordagem pode ser empregada com sucesso como um guia para auxiliar especialistas a explorar, refinar e definir as características que representam apropriadamente um conjunto de imagens / Image analysis systems rely on the fact that the dataset under investigation is correctly represented by features. However, defining a set of features that properly represents a dataset is still a challenging and, in most cases, an exhausting task. Most of the available techniques, especially when a large number of features is considered, are based on purely quantitative statistical measures or approaches based on artificial intelligence, and normally are black-boxes to the user. The approach proposed here seeks to open this black-box by means of visual representations via Multidimensional Classical Scaling projection technique, enabling users to get insight about the meaning and representativeness of the features computed from different feature extraction algorithms and sets of parameters. This approach is evaluated over six image datasets that contains textures, medical images and outdoor scenes. The results show that, as the combination of sets of features and changes in parameters improves the quality of the visual representation, the accuracy of the classification for the computed features also improves. In order to reduce this subjectiveness, a measure called silhouette index, which was originally proposed to evaluate results of clustering algorithms, is employed. Moreover, the visual exploration of datasets under analysis enable users to investigate one of the greatest challenges in data classification: the presence of intra-class variation. The results strongly suggest that our approach can be successfully employed as a guidance to defining and understanding a set of features that properly represents an image dataset
|
3 |
Visual exploration to support the identification of relevant attributes in time-varying multivariate data / Visualização como apoio à identificação de atributos relevantes em dados multidimensionais variantes no tempoVargas, Aurea Rossy Soriano 19 March 2018 (has links)
Ionospheric scintillation is a rapid variation in the amplitude and/or phase of radio signals traveling through the ionosphere. This spatial and time-varying phenomenon is of interest because its occurrence may affect the reception quality of satellite signals. Specialized receivers at strategic regions can track multiple variables related to the phenomenon, generating a database of historical observations on the regional behavior of ionospheric scintillation. The analysis of such data is very challenging, since it consists of time-varying measurements of many variables which are heterogeneous in nature and with possibly many missing values, recorded over extensive time periods. There is a need to introduce alternative intuitive strategies that contribute to experts acquiring further knowledge from the ionospheric scintillation data. Such challenges motivated a study on the applicability of visualization techniques to support tasks of identification of relevant attributes in the study of the behavior of phenomena described by multiple time-varying variables, of which the ionospheric scintillation is a good example. In particular, this thesis introduces a visual analytics framework, named TV-MV Analytics, that supports exploratory tasks on time-varying multivariate data and was developed following the requirements of experts on ionospheric scintillation from the Faculty of Science and Technology of UNESP at Presidente Prudente, Brazil. TV-MV Analytics provides an interactive visual exploration loop to analysts inspecting the behavior of multiple variables at different temporal scales, through temporal representations associated with clustering and multidimensional projection techniques. Analysts can also assess how different feature sub-spaces contribute to characterizing a certain behavior, where they may direct the analysis process and include their domain knowledge in the exploratory analysis. We also illustrate the application of TV-MV Analytics on multivariate time-varying data sets from three alternative application domains. Experimental results indicate the proposed solutions show good potential on assisting time-varying multivariate data mining tasks, since it reduces the effort required from experts to gain deeper insight into the historical behavior of the variables describing a phenomenon or domain. / A cintilação ionosférica é uma variação rápida na amplitude e/ou na fase dos sinais de rádio que viajam através da ionosfera. Este fenômeno espacial e variante no tempo é de grande interesse, pois pode afetar a qualidade de recepção dos sinais de satélite. Receptores especializados em regiões estratégicas podem rastrear múltiplas variáveis relacionadas ao fenômeno, gerando um banco de dados de observações históricas sobre o comportamento regional da cintilação. O estudo do comportamento da cintilação é desafiador, uma vez que requer a análise extensiva de dados multivariados e variantes no tempo, coletados por longos períodos. Medições são registradas continuamente, e são de natureza heterogênea, compreendendo múltiplas variáveis de diferentes categorias e possivelmente com muitos valores faltantes. Portanto, existe a necessidade de introduzir estratégias alternativas, eficientes e intuitivas, que contribuam para a adquisição de conhecimento, a partir dos dados, por especialistas que estudam a cintilação ionosférica. Tais desafios motivaram o estudo da aplicabilidade de técnicas de visualização para apoiar tarefas de identificação de atributos relevantes no estudo do comportamento de fenômenos ou domínios que envolvem múltiplas variáveis, como a cintilação. Em particular, esta tese introduz um arcabouço visual, o qual foi denominado TV-MV Analytics, que apoia tarefas de análise exploratória sobre dados multivariados e variáveis no tempo, inspirado em requisitos de especialistas no estudo da cintilação, vinculados à Faculdade de Ciências e Tecnologia da UNESP de Presidente Prudente, Brasil. O TV-MV Analytics fornece aos analistas um ciclo de interativo de exploração que apoia a inspeção do comportamento temporal de múltiplas variáveis, em diferentes escalas temporais, por meio de representações visuais temporais associadas a técnicas de agrupamento e de projeção multidimensional. Também permite avaliar como diferentes sub-espaços de atributos caracterizam um determinado comportamento, podendo direcionar o processo de análise e inserir seu conhecimento do domínio no processo de análise exploratória. As funcionalidades do TV-MV Analytics também são ilustradas em dados variantes no tempo oriundos de outros três domínios de aplicação. Os resultados experimentais indicaram que as soluções propostas têm bom potencial em tarefas de mineração de dados multivariados e variantes no tempo, uma vez que reduz o esforço e contribui para os especialistas obterem informações detalhadas sobre o comportamento histórico das variáveis que descrevem um determinado fenômeno ou domínio.
|
4 |
Visual exploration to support the identification of relevant attributes in time-varying multivariate data / Visualização como apoio à identificação de atributos relevantes em dados multidimensionais variantes no tempoAurea Rossy Soriano Vargas 19 March 2018 (has links)
Ionospheric scintillation is a rapid variation in the amplitude and/or phase of radio signals traveling through the ionosphere. This spatial and time-varying phenomenon is of interest because its occurrence may affect the reception quality of satellite signals. Specialized receivers at strategic regions can track multiple variables related to the phenomenon, generating a database of historical observations on the regional behavior of ionospheric scintillation. The analysis of such data is very challenging, since it consists of time-varying measurements of many variables which are heterogeneous in nature and with possibly many missing values, recorded over extensive time periods. There is a need to introduce alternative intuitive strategies that contribute to experts acquiring further knowledge from the ionospheric scintillation data. Such challenges motivated a study on the applicability of visualization techniques to support tasks of identification of relevant attributes in the study of the behavior of phenomena described by multiple time-varying variables, of which the ionospheric scintillation is a good example. In particular, this thesis introduces a visual analytics framework, named TV-MV Analytics, that supports exploratory tasks on time-varying multivariate data and was developed following the requirements of experts on ionospheric scintillation from the Faculty of Science and Technology of UNESP at Presidente Prudente, Brazil. TV-MV Analytics provides an interactive visual exploration loop to analysts inspecting the behavior of multiple variables at different temporal scales, through temporal representations associated with clustering and multidimensional projection techniques. Analysts can also assess how different feature sub-spaces contribute to characterizing a certain behavior, where they may direct the analysis process and include their domain knowledge in the exploratory analysis. We also illustrate the application of TV-MV Analytics on multivariate time-varying data sets from three alternative application domains. Experimental results indicate the proposed solutions show good potential on assisting time-varying multivariate data mining tasks, since it reduces the effort required from experts to gain deeper insight into the historical behavior of the variables describing a phenomenon or domain. / A cintilação ionosférica é uma variação rápida na amplitude e/ou na fase dos sinais de rádio que viajam através da ionosfera. Este fenômeno espacial e variante no tempo é de grande interesse, pois pode afetar a qualidade de recepção dos sinais de satélite. Receptores especializados em regiões estratégicas podem rastrear múltiplas variáveis relacionadas ao fenômeno, gerando um banco de dados de observações históricas sobre o comportamento regional da cintilação. O estudo do comportamento da cintilação é desafiador, uma vez que requer a análise extensiva de dados multivariados e variantes no tempo, coletados por longos períodos. Medições são registradas continuamente, e são de natureza heterogênea, compreendendo múltiplas variáveis de diferentes categorias e possivelmente com muitos valores faltantes. Portanto, existe a necessidade de introduzir estratégias alternativas, eficientes e intuitivas, que contribuam para a adquisição de conhecimento, a partir dos dados, por especialistas que estudam a cintilação ionosférica. Tais desafios motivaram o estudo da aplicabilidade de técnicas de visualização para apoiar tarefas de identificação de atributos relevantes no estudo do comportamento de fenômenos ou domínios que envolvem múltiplas variáveis, como a cintilação. Em particular, esta tese introduz um arcabouço visual, o qual foi denominado TV-MV Analytics, que apoia tarefas de análise exploratória sobre dados multivariados e variáveis no tempo, inspirado em requisitos de especialistas no estudo da cintilação, vinculados à Faculdade de Ciências e Tecnologia da UNESP de Presidente Prudente, Brasil. O TV-MV Analytics fornece aos analistas um ciclo de interativo de exploração que apoia a inspeção do comportamento temporal de múltiplas variáveis, em diferentes escalas temporais, por meio de representações visuais temporais associadas a técnicas de agrupamento e de projeção multidimensional. Também permite avaliar como diferentes sub-espaços de atributos caracterizam um determinado comportamento, podendo direcionar o processo de análise e inserir seu conhecimento do domínio no processo de análise exploratória. As funcionalidades do TV-MV Analytics também são ilustradas em dados variantes no tempo oriundos de outros três domínios de aplicação. Os resultados experimentais indicaram que as soluções propostas têm bom potencial em tarefas de mineração de dados multivariados e variantes no tempo, uma vez que reduz o esforço e contribui para os especialistas obterem informações detalhadas sobre o comportamento histórico das variáveis que descrevem um determinado fenômeno ou domínio.
|
5 |
Classification non supervisée de données spatio-temporelles multidimensionnelles : Applications à l’imagerie / Multidimensional spatio-temporal data clustering, with applications to imagingMure, Simon 02 December 2016 (has links)
Avec l'augmentation considérable d'acquisitions de données temporelles dans les dernières décennies comme les systèmes GPS, les séquences vidéo ou les suivis médicaux de pathologies ; le besoin en algorithmes de traitement et d'analyse efficaces d'acquisition longitudinales n'a fait qu'augmenter. Dans cette thèse, nous proposons une extension du formalisme mean-shift, classiquement utilisé en traitement d'images, pour le groupement de séries temporelles multidimensionnelles. Nous proposons aussi un algorithme de groupement hiérarchique des séries temporelles basé sur la mesure de dynamic time warping afin de prendre en compte les déphasages temporels. Ces choix ont été motivés par la nécessité d'analyser des images acquises en imagerie par résonance magnétique sur des patients atteints de sclérose en plaques. Cette maladie est encore très méconnue tant dans sa genèse que sur les causes des handicaps qu'elle peut induire. De plus aucun traitement efficace n'est connu à l'heure actuelle. Le besoin de valider des hypothèses sur les lésions de sclérose en plaque nous a conduit à proposer des méthodes de groupement de séries temporelles ne nécessitant pas d'a priori sur le résultat final, méthodes encore peu développées en traitement d'images. / Due to the dramatic increase of longitudinal acquisitions in the past decades such as video sequences, global positioning system (GPS) tracking or medical follow-up, many applications for time-series data mining have been developed. Thus, unsupervised time-series data mining has become highly relevant with the aim to automatically detect and identify similar temporal patterns between time-series. In this work, we propose a new spatio-temporal filtering scheme based on the mean-shift procedure, a state of the art approach in the field of image processing, which clusters multivariate spatio-temporal data. We also propose a hierarchical time-series clustering algorithm based on the dynamic time warping measure that identifies similar but asynchronous temporal patterns. Our choices have been motivated by the need to analyse magnetic resonance images acquired on people affected by multiple sclerosis. The genetics and environmental factors triggering and governing the disease evolution, as well as the occurrence and evolution of individual lesions, are still mostly unknown and under intense investigation. Therefore, there is a strong need to develop new methods allowing automatic extraction and quantification of lesion characteristics. This has motivated our work on time-series clustering methods, which are not widely used in image processing yet and allow to process image sequences without prior knowledge on the final results.
|
Page generated in 0.0571 seconds