• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 499
  • 201
  • 111
  • 59
  • 55
  • 39
  • 38
  • 28
  • 19
  • 16
  • 14
  • 13
  • 8
  • 6
  • 6
  • Tagged with
  • 1288
  • 142
  • 120
  • 120
  • 116
  • 112
  • 108
  • 106
  • 93
  • 85
  • 80
  • 80
  • 73
  • 70
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

An Exploration of Blackboard Utilization by Faculty at a Midwestern University

Nichols, David L. January 2011 (has links)
No description available.
192

New methods for positional quality assessment and change analysis of shoreline features

Ali, Tarig Abdelgayoum January 2003 (has links)
No description available.
193

The emergence of distinctive features

Mielke, Jeff 29 September 2004 (has links)
No description available.
194

Memory for temporally nonadjacent tonal centers mediated by musically salient features

Spyra, Joanna January 2022 (has links)
Research on memory often describes the remarkable longevity of music. However, memory for music is not uniform. Cook (1987) found that participants were not able to tell apart excerpts that modulated from those that did not when the excerpt was longer than 1 minute in length. This suggests that participants were no longer able to remember, and compare, musical keys after a relatively short period of time. Farbood (2016) and Woolhouse et al. (2016) further explored the limitations of memory for tonal structures finding that, in fact, harmonic memory only lasts up to 21 seconds after modulation. However, this research was done using homophonic stimuli—arpeggios or quarter-note chords—that may not be representative of the music participants would be listening to regularly. The focus of this project was to explore how the addition of certain musical features, such as melodic or rhythmic figurations, may influence harmonic memory. Observing these possible influences may provide us with insight into the processes responsible for auditory memory and how it differs from other domains, such as speech or vision. Chapter 1 explores prominent memory literature and music cognition experiments that support, or address concerns with, common memory models. Here, I introduce a cognitive system which reconciles music research with models by memory specialists such as Baddeley and Snyder. Chapter 2 presents a detailed account of background empirical literature, including Farbood (2016) and Woolhouse et al. (2016). Though fundamental to the exploration of temporally nonadjacent harmonic memory, this research is potentially limited in its generalizability due to the homophonic nature of the stimuli. Chapter 3 explores this limitation by testing the effects of adding surface features—melodic and rhythmic components often used for elaboration in composition—on memory for large-scale tonal structures. Results found that harmonic memory is, indeed, enhanced and prolonged by these elaborative components, lasting up to 33 seconds, well past the limit found in previous research. Farbood (2016) further claimed that harmonic memory is significantly interrupted by new, highly harmonic excerpts. However, results from Woolhouse et al. (2016), Spyra et al. (2021) and those from Chapter 3 all question this claim as they employed stimuli that was highly harmonic. Chapter 4 investigates the contradiction by testing whether functional diatonic, functional chromatic, or random sequences degraded harmonic memory for an original key. Functional diatonic intervening information resulted in increased harmonic memory, directly contradicting Farbood’s original findings. In Chapter 5, these results are explored in terms of prominent memory models in the field of cognition, supporting standard models of memory such as that by Baddeley and Hitch (1974) or Atkinson and Shiffrin (1968), as well as my proposed cognitive system. This is further elaborated by discussing the process of undergoing a musical judgement task from perception through to decision-making. In summary, this project suggests that more generalizable stimuli containing realistic musical features produce a significant boost in harmonic memory. Furthermore, this arguably calls into question standard practices in analysis that categorize surface features as hierarchically less important than ’deeper’ harmonic events, and thus, potentially less important from a cognitive perspective. Which is to say, this evidence suggests that these features may play a vital role in remembering nonadjacent harmonic structures. / Dissertation / Doctor of Philosophy (PhD) / Memory for music is often celebrated for its longevity. Music is a complex stimulus, however, and not all of its characteristics are remembered equally well. Past research has found that participants were not able to remember musical keys after a surprisingly short period of time: Farbood (2016) and Woolhouse et al. (2016) found that harmonic memory—i.e., memory for a key—lasts up to 21 seconds after a key change. Compared to nursery rhymes remembered from childhood bedtimes, this is remarkably limited. Yet this research did not fully explore which musical characteristics affect harmonic memory as it was done using simple musical stimuli: compositions made of blocks of chords. Whereas a string of chords might sound pleasant, it may not be representative of the type of music that people listen to regularly (with complex melodies and instrumentation). The focus of this project was to explore musical factors, such as melodies or rhythms, and measure how they interact with musical memory. Observing specific aspects of the stimulus gives us a window into the complexities of human memory, particularly that of the auditory domain. Chapter 1 provides an overview of memory literature with a focus on common memory models and the musical research that supports them or contributes to their development. Here, I propose a cognitive system which integrates prominent models that otherwise describe different stages of processing complex auditory stimuli. Chapter 2 presents a detailed account of background empirical literature. This provides a basis for a series of experiments outlined in Chapters 3 and 4. These experiments investigate how components of music influence harmonic memory. Components include Surface Features, or ornamentations in music such as melodies or rhythms, and Harmony, the structure of the key itself which can make an excerpt sound more, or less, familiar. Results suggest that memory is significantly enhanced and prolonged by the addition of surface features. Furthermore, harmony that most resembles culturally familiar compositional practices also provides a memory boost when compared to random or somewhat ambiguous sequences. In Chapter 5, the implications of these results are explored with regards to the general memory models discussed in Chapter 1. Results support standard models of memory and my proposed cognitive system, as demonstrated by following the processing of my experimental musical stimuli from sound to executive function. This project suggests that more complex and musically realistic stimuli produce a significant memory boost. This puts into question traditional practices in music analysis which separate surface features into hierarchically less important positions when, in fact, the musical surface may be vital to our processing of auditory stimuli.
195

Robust Feature Extraction and Temporal Analysis for Partial Fingerprint Identification

Short, Nathaniel Jackson 24 October 2012 (has links)
Identification of an individual from discriminating features of the friction ridge surface is one of the oldest and most commonly used biometric techniques. Methods for identification span from tedious, although highly accurate, manual examination to much faster Automated Fingerprint Identification Systems (AFIS). While automatic fingerprint recognition has grown in popularity due to the speed and accuracy of matching minutia features of good quality plain-to-rolled prints, the performance is less than impressive when matching partial fingerprints. For some applications, including forensic analysis where partial prints come in the form of latent prints, it is not always possible to obtain high-quality image samples. Latent prints, which are lifted from a surface, are typically of low quality and low fingerprint surface area. As a result, the overlapping region in which to find corresponding features in the genuine matching ten-print is reduced; this in turn reduces the identification performance. Image quality also can vary substantially during image capture in applications with a high throughput of subjects having limited training, such as in border control. The rushed image capture leads to an overall acceptable sample being obtained where local image region quality may be low. We propose an improvement to the reliability of features detected in exemplar prints in order to reduce the likelihood of an unreliable overlapping region corresponding with a genuine partial print. A novel approach is proposed for detecting minutiae in low quality image regions. The approach has demonstrated an increase in match performance for a set of fingerprints from a well-known database. While the method is effective at improving match performance for all of the fingerprint images in the database, a more significant improvement is observed for a subset of low quality images. In addition, a novel method for fingerprint analysis using a sequence of fingerprint images is proposed. The approach uses the sequence of images to extract and track minutiae for temporal analysis during a single impression, reducing the variation in image quality during image capture. Instead of choosing a single acceptable image from the sequence based on a global measure, we examine the change in quality on a local level and stitch blocks from multiple images based on the optimal local quality measures. / Ph. D.
196

Measuring Engagement Effects of Educational Games and Virtual Manipulatives on Mathematics

Samur, Yavuz 29 May 2012 (has links)
Educational games have been demonstrated to increase engagement and engagement has been demonstrated to increase achievement. Therefore, the researcher attempted to investigate how to better measure engagement and refine the measurement of engagement in this study. To frame the engagement, three domains of engagement – behavioral, cognitive, and emotional– are analyzed in detail to be able to examine the qualities of each type. Moreover, three game attributes –clear goals, immediate feedback, and balance between challenges and skills- are presented and discussed as fundamental features of virtual manipulatives and educational games used in this study to make an impact on students’ engagement. To measure effects of educational games and virtual manipulatives on three domains of engagement, the researcher designed an engagement survey that examines each domain separately with their sub-domains. The Cronbach’s alphas for engagement pre-test and post-test were found .89 and .91 respectively. In this pre-test and post-test quasi-experimental design, four fifth-grade classrooms (N=86) from four schools in southwest Virginia were assigned as three experimental groups and one control group. In the first experimental group, participants played an educational game called Candy Factory and in the second experimental group, the students played another educational game called Pearl Diver on iPod Touch for eight days consecutively, for 20 minutes each. In the third experimental group, participants performed activities with virtual manipulatives, whereas in the control group, participants did paper-and-pencil iii drills for the same duration. All of the groups studied on the same topic, fractions. According to the results of ANCOVA, experimental group students’ engagement scores were found significantly higher than control group students’, F(1,80)=11.568, p=.001. When three domains of engagement were analyzed, significant differences were found among all three domains between experimental and control groups. When the researcher conducted separate analysis for educational games group and virtual manipulatives group, students who played educational games were also found significantly different than control group students in terms of all three domains of engagement and general engagement, F(1, 58)= 8.883, p=.004. In addition to this, students who did activities with virtual manipulatives showed significantly higher engagement than students who did paper-and-pencil drills in control group, F(1, 46)= 7.967, p=.007. Statistical difference was found in emotional and cognitive engagement while the results showed no significant difference in behavioral engagement between virtual manipulatives and control group students. Therefore, the three game attributes were considered as the main determining factors to engage students more to the content. / Ph. D.
197

Designing outdoor spaces to support older adult dog walkers: A multi-method approach to identify and prioritize features in the built environment

Shealy, Elizabeth Carlisle 02 April 2021 (has links)
Associations between the built environment and walking are well understood among the general population, but far less is known about how features of the built environment influence walking in older adults. As compared to other age groups, older adults, defined as those 65 years of age and older, are more likely to experience declines in physical activity, social interaction, and loss of community connectivity. Animal companionship can provide older adults the motivation to stay physically active and help them mitigate the feelings of isolation. Built environments that align with the needs and abilities of older adults and their animal companions, like dogs, can encourage and help sustain walking habits. The aim of this study was to identify and prioritize features within the built environment pertinent to older adult dog walkers. Existing literature served as the basis for identifying neighborhood design features associated with general walking and dog walking. Through the use of a three round Delphi study, 25 experts from urban planning and design, management of outdoor spaces, public health, gerontology, and human-animal relationships modified and rated the importance of the identified features as it pertains to older adult dog walkers. Following the Delphi study, 12 older adult dog owners from the Warm Hearth Village participated in a guided walk and interview using the Photovoice technique. The goal was to gather their perceptions of the outdoor walking environment. Among expert panelists, safety from motorized traffic, crime, unleashed dogs, and personal injury was paramount (mean (M)= 93.20, standard deviation (SD) = 11.54). Experts also saw the value and agreed upon the importance of dog supportive features within the built environment, like dog waste stations dog waste stations (desirable; M = 87.95, SD = 11.37), and dog policy signage (desirable; M = 79.91, SD = 11.22). Older adults also believed safety was important. They saw their dog as a protective safety factor against walking deterrents like aggressive or unleashed dogs. However, the feature that resonated most with older adult dog walkers in this study was their interaction with nature. They described the pleasure of observing seasons change and the connection with nature that came from the tree canopy cocooning the walking path. Path design is also a necessary consideration. Older adults emphasized the importance of having options between paved and unpaved walking paths. The panelists stressed the need for creating lines of sight (desirable; M = 66.46, SD = 20.71) and lighting (desirable; M = 77.92, SD =19.77). Those who plan, develop, and maintain spaces that support older adults can prioritize the features I identified in my research. Incorporating these features into the design of spaces for older adults has the potential to translate into increased walking and opportunities to socialize, contributing to mental and physical health. / Doctor of Philosophy / Associations between the built environment and walking are well understood among the general population, but less is known about how features in the built environment influence older adults. As compared to other age groups, older adults are more likely to experience declines in physical activity and social interaction. Animal companionship can provide motivation to stay physically active and help them mitigate feelings of isolation. Built environments that align with the needs of older adults and their animal companions, like dogs, can encourage and help sustain walking habits. My research identified and prioritized features within the built environment pertinent to older adult dog walkers. I implemented an iterative three round study to gain consensus among expert panelists and guided walks and interviews with older adult dog walkers. Among expert panelists, safety from motorized traffic, crime, unleashed dogs, and personal injury was paramount. Experts also saw the value of dog supportive features within the built environment, like dog waste stations. Older adults also believed safety was important. They saw their dog as a protective safety factor against walking deterrents like aggressive dogs. The feature that resonated most with older adult in this study was nature. They described the pleasure of observing seasons change and the connection with nature that came from the tree canopy cocooning the walking path. Path design is also a necessary consideration. Older adults emphasized the importance of having options between paved and unpaved walking paths. Those who plan, develop, and maintain spaces that support older adults can prioritize the features I identified in my research. Incorporating these features into outdoor spaces has the potential to translate into increased walking and opportunities to socialize, contributing to mental and physical health.
198

Shit Show

Lehe, Patrick J. 01 April 2020 (has links) (PDF)
When an overzealous Christian girl attends a massive music festival, she must stop the headlining girl band, secretly a coven of witches, from opening a portal to Hell during their final encore.
199

Hydropedology of Problematic Interfluve Transported Soils in the Central Virginia Piedmont

Severson, Erik D. 29 September 2016 (has links)
Interpreting soil wetness in upland transported soils on flat broad summits in the central Piedmont of Virginia containing chroma ≥ 3 redoximorphic features (RMFs) can be difficult. It is imperative to understand their saturation regimes because onsite wastewater disposal systems, which are sited based upon soil evaluations, have failed prematurely when installed into these problematic soils. My objectives were to determine if soil morphology was an accurate predictor of soil wetness and permeability, to differentiate interpretations for colluvial soils from residual soils, and to determine the effect of canopy cover on seasonal wetness. Soil morphology, soil wetness regimes in open and wooded canopies, and in-situ saturated hydraulic conductivity were documented in transported Appomattox, Bentley, Brockroad, Catharpin, and Dothan and residual Clifford, Minnieville, and Penhook soil series at eight sites. Transported soils had average winter water levels, and met 30-day and 20-day NRCS oxyaquic criteria at 81, 66, and 91 cm, respectively. Transported soils with depleted ped faces, Fe- concentrations, and chroma 3 depletions were saturated an average of 41, 23, and 41% of the winter, respectively. Residuum found ≥ 1.5 m beneath transported soils exhibited little saturation, thus confirming epiaquic conditions. Residual soils did not perch water for extended periods; and were saturated for significantly (p<0.001) shorter durations and shallower depths (average 93 and 82 cm for 30-day and 20-day oxyaquic criteria, respectively). Transported soils under clear cuts had significantly (p<0.001) shallower average water levels (79 cm) and 30-day and 20-day oxyaquic conditions (51 and 88 cm, respectively) than wooded locations (87 and 83 cm average water levels and 30-day oxyaquic water table, respectively). In-situ hydraulic testing confirmed the presence of low permeability layers as determined by soil evaluation. Restrictive layers were thicker and less permeable in transported soils than in residual soils. In summary, water perches seasonally for extended periods over thick impermeable layers in transported soils. A recommended best management practice for problematic transported soils would be to not install septic systems in zones of saturation and low permeability, including the 1.5 m below a discontinuity. Drainfield designs should utilize permeable saprolite beneath transported material and an upslope curtain drain. / Ph. D.
200

Mining Rare Features in Fingerprints using Core points and Triplet-based Features

Munagani, Indira Priya Darshini 04 January 2014 (has links)
A fingerprint matching algorithm with a novel set of matching parameters based on core points and triangular descriptors is proposed to discover rarity in fingerprints. The algorithm uses a mathematical and statistical approach to discover rare features in fingerprints which provides scientific validation for both ten-print and latent fingerprint evidence. A feature is considered rare if it is statistically uncommon; that is, the rare feature should be unique among N (N>100) randomly sampled prints. A rare feature in a fingerprint has higher discriminatory power when it is identified in a print (latent or otherwise). In the case of latent fingerprint matching, the enhanced discriminatory power from the rare features can help in delivering a confident court judgment. In addition to mining the rare features, a parallel algorithm for fingerprint matching on GPUs is also proposed to reduce the run-time of fingerprint matching on larger databases. Results show that 1) matching algorithm is useful in eliminating false matches. 2) each of the 30 fingerprints randomly selected to mine rare features have a small set of highly distinctive statistically rare features some of whose occurrence is one in 1000 fingerprints. 3) the parallel algorithm implemented on GPUs for larger databases is around 40 times faster than the sequential algorithm. / Master of Science

Page generated in 0.0394 seconds