Spelling suggestions: "subject:"hecho convex"" "subject:"hecho convexe""
1 |
Detecção de anomalias utilizando métodos paramétricos e múltiplos classificadores / Anomaly detection using parametric methods and multiple classifiersCosta, Gabriel de Barros Paranhos da 25 August 2014 (has links)
Anomalias ou outliers são exemplos ou grupo de exemplos que apresentam comportamento diferente do esperado. Na prática,esses exemplos podem representar doenças em um indivíduo ou em uma população, além de outros eventos como fraudes em operações bancárias e falhas em sistemas. Diversas técnicas existentes buscam identificar essas anomalias, incluindo adaptações de métodos de classificação e métodos estatísticos. Os principais desafios são o desbalanceamento do número de exemplos em cada uma das classes e a definição do comportamento normal associada à formalização de um modelo para esse comportamento. Nesta dissertação propõe-se a utilização de um novo espaço para realizar a detecção,esse espaço é chamado espaço de parâmetros. Um espaço de parâmetros é criado utilizando parâmetros estimados a partir da concatenação(encadeamento) de dois exemplos. Apresenta-se,então,um novo framework para realizar a detecção de anomalias através da fusão de detectores que utilizam fechos convexos em múltiplos espaços de parâmetros para realizar a detecção. O método é considerado um framework pois é possível escolher quais os espaços de parâmetros que serão utilizados pelo método de acordo como comportamento da base de dados alvo. Nesse trabalho utilizou-se,para experimentos,dois conjuntos de parâmetros(média e desvio padrão; média, variância, obliquidade e curtose) e os resultados obtidos foram comparados com alguns métodos comumente utilizados para detecção de anomalias. Os resultados atingidos foram comparáveis ou melhores aos obtidos pelos demais métodos. Além disso, acredita-se que a utilização de espaços de parâmetros cria uma grande flexibilidade do método proposto, já que o usuário pode escolher um espaço de parâmetros que se adeque a sua aplicação. Tanto a flexibilidade quanto a extensibilidade disponibilizada pelo espaço de parâmetros, em conjunto como bom desempenho do método proposto nos experimentos realizados, tornam atrativa a utilização de espaços de parâmetros e, mais especificamente, dos métodos apresentados na solução de problemas de detecção de anomalias. / Anomalies or outliers are examples or group of examples that have a behaviour different from the expected. These examples may represent diseases in individuals or populations,as well as other events such as fraud and failures in banking systems.Several existing techniques seek to identify these anomalies, including adaptations of classification methods, statistical methods and methods based on information theory. The main challenges are that the number of samples of each class is unbalanced, the cases when anomalies are disguised among normal samples and the definition of normal behaviour associated with the formalization of a model for this behaviour. In this dissertation,we propose the use of a new space to helpwith the detection task, this space is called parameter space. We also present a new framework to perform anomaly detection by using the fusion of convex hulls in multiple parameter spaces to perform the detection.The method is considered a framework because it is possible to choose which parameter spaces will be used by the method according to the behaviour of the target data set.For the experiments, two parameter spaces were used (mean and standard deviation; mean, variance, skewness and kurtosis) and the results were compared to some commonly used anomaly detection methods. The results achieved were comparable or better than those obtained by the other methods. Furthermore, we believe that a parameter space created great fexibility for the proposed method, since it allowed the user to choose a parameter space that best models the application. Both the flexibility and extensibility provided by the use of parameter spaces, together with the good performance achieved by the proposed method in the experiments, make parameter spaces and, more specifically, the proposed methods appealing when solving anomaly detection problems.
|
2 |
Detecção de anomalias utilizando métodos paramétricos e múltiplos classificadores / Anomaly detection using parametric methods and multiple classifiersGabriel de Barros Paranhos da Costa 25 August 2014 (has links)
Anomalias ou outliers são exemplos ou grupo de exemplos que apresentam comportamento diferente do esperado. Na prática,esses exemplos podem representar doenças em um indivíduo ou em uma população, além de outros eventos como fraudes em operações bancárias e falhas em sistemas. Diversas técnicas existentes buscam identificar essas anomalias, incluindo adaptações de métodos de classificação e métodos estatísticos. Os principais desafios são o desbalanceamento do número de exemplos em cada uma das classes e a definição do comportamento normal associada à formalização de um modelo para esse comportamento. Nesta dissertação propõe-se a utilização de um novo espaço para realizar a detecção,esse espaço é chamado espaço de parâmetros. Um espaço de parâmetros é criado utilizando parâmetros estimados a partir da concatenação(encadeamento) de dois exemplos. Apresenta-se,então,um novo framework para realizar a detecção de anomalias através da fusão de detectores que utilizam fechos convexos em múltiplos espaços de parâmetros para realizar a detecção. O método é considerado um framework pois é possível escolher quais os espaços de parâmetros que serão utilizados pelo método de acordo como comportamento da base de dados alvo. Nesse trabalho utilizou-se,para experimentos,dois conjuntos de parâmetros(média e desvio padrão; média, variância, obliquidade e curtose) e os resultados obtidos foram comparados com alguns métodos comumente utilizados para detecção de anomalias. Os resultados atingidos foram comparáveis ou melhores aos obtidos pelos demais métodos. Além disso, acredita-se que a utilização de espaços de parâmetros cria uma grande flexibilidade do método proposto, já que o usuário pode escolher um espaço de parâmetros que se adeque a sua aplicação. Tanto a flexibilidade quanto a extensibilidade disponibilizada pelo espaço de parâmetros, em conjunto como bom desempenho do método proposto nos experimentos realizados, tornam atrativa a utilização de espaços de parâmetros e, mais especificamente, dos métodos apresentados na solução de problemas de detecção de anomalias. / Anomalies or outliers are examples or group of examples that have a behaviour different from the expected. These examples may represent diseases in individuals or populations,as well as other events such as fraud and failures in banking systems.Several existing techniques seek to identify these anomalies, including adaptations of classification methods, statistical methods and methods based on information theory. The main challenges are that the number of samples of each class is unbalanced, the cases when anomalies are disguised among normal samples and the definition of normal behaviour associated with the formalization of a model for this behaviour. In this dissertation,we propose the use of a new space to helpwith the detection task, this space is called parameter space. We also present a new framework to perform anomaly detection by using the fusion of convex hulls in multiple parameter spaces to perform the detection.The method is considered a framework because it is possible to choose which parameter spaces will be used by the method according to the behaviour of the target data set.For the experiments, two parameter spaces were used (mean and standard deviation; mean, variance, skewness and kurtosis) and the results were compared to some commonly used anomaly detection methods. The results achieved were comparable or better than those obtained by the other methods. Furthermore, we believe that a parameter space created great fexibility for the proposed method, since it allowed the user to choose a parameter space that best models the application. Both the flexibility and extensibility provided by the use of parameter spaces, together with the good performance achieved by the proposed method in the experiments, make parameter spaces and, more specifically, the proposed methods appealing when solving anomaly detection problems.
|
3 |
Teoremas de semiespaço para superfícies mínimasSilva, Sylvia Ferreira da 20 March 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-09-01T13:15:28Z
No. of bitstreams: 1
arquivototal.pdf: 612605 bytes, checksum: 21376fa219dbfadac44b0c5d02d91cd3 (MD5) / Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-09-01T15:55:26Z (GMT) No. of bitstreams: 1
arquivototal.pdf: 612605 bytes, checksum: 21376fa219dbfadac44b0c5d02d91cd3 (MD5) / Made available in DSpace on 2017-09-01T15:55:26Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 612605 bytes, checksum: 21376fa219dbfadac44b0c5d02d91cd3 (MD5)
Previous issue date: 2017-03-20 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we detail the results submitted by Ho man and Meeks in \The strong
half-space theorem for minimal surfaces". The rst results are half-space theorems for
minimal surfaces in R3 which have been generalized for other ambients, as have been
done by Daniel, B./ Hauswirth, L., e Daniel, B./ Meeks, W. H. III. The third and last
one result, caracterize convex hull in n- dimensional Euclidean spaces. / Neste trabalho detalhamos os resultados apresentados por William H. Meeks e
David A. Ho man em \The strong half-space theorem for minimal surfaces", . Os
primeiros resultados s~ao teoremas de semiespa co para superf cies m nimas no R3, os
quais tem sido generalizados para outros ambientes como foi feito por Daniel, B./
Hauswirth, L., e Daniel, B./ Meeks, W. H. III. O terceiro e ultimo resultado, caracteriza
fechos convexos no espa co euclidiano n-dimensional.
|
Page generated in 0.0659 seconds