• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 3
  • Tagged with
  • 107
  • 107
  • 44
  • 43
  • 31
  • 29
  • 26
  • 25
  • 24
  • 20
  • 19
  • 19
  • 18
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Detecting Distracted Drivers using a Federated Computer Vision Model : With the Help of Federated Learning

Viggesjöö, Joel January 2023 (has links)
En av de vanligaste distraktionerna under bilkörning är utförandet av aktiviteter som avlägsnar förarens fokus från vägen, exempelvis användandet av en telefon för att skicka meddelanden. Det finns många olika sätt att hantera dessa problem, varav en teknik är att använda maskininlärning för att identifiera och notifiera distraherade bilförare. En lösning för detta blev presenterad i en tidigare artikel, varav traditionell maskininlärning med en centraliserad metod användes, vilket resulterade i goda resultat vid utvärdering. Som ett nästa steg föreslog artikeln att de skapade algoritmerna kunde bli förlängd till decentraliserad lösning för att öka stabiliteten av modellen. Således förlängde detta projekt den centrala maskininlärningsmodellen till en federerad lösning, med mål att behålla liknande resultat vid utvärdering. Som ett ytterligare delmål utforskade projektet kvantiseringstekniker för att erhålla en mindre modell, med mål att behålla liknande resultat som tidigare lösningar. Dessutom introducerades ett ytterligare delmål, vilket var att utforska metoder för att rekonstuera data för att stärka integriteten av modellen ytterligare, med mål att behålla liknande resultat som tidigare lösningar. Projektet lyckades med att förlänga modellen till federerad lärning, tillsammans med implementeringen av kvantiserings-tekniker för att erhålla en mindre modell, men delmålet angående rekonstruering av data uppnåddes ej på grund av tidsbrist. Projektet använde sig av en blandning av bibliotek från Python för att förlänga samt kvantisera modellen, vilket resulterade i fyra nya modeller: en decentraliserad modell samt tre modeller som minskade i storlek med 48 %, 70 %, och 71 % jämfört med den decentraliserade modellen. Utvärderingarna för samtliga modeller visade liknande resultat som den ursprungliga centraliserade modellen, vilket indikerade att projektet var framgångsrikt. / One of the most common driving distractions is performing activities that diverts your attention away from the road, such as using a phone for texting. To address this issue, techniques such as machine learning and computer vision could be used to identify and notify distracted drivers. A solution for this was presented in an earlier article, using a traditional centralized machine learning approach with a good prediction accuracy. As a next step, the earlier article mentions that the created computer vision algorithms could be extended to a federated learning setting to further increase the robustness of the model. Thus, this project extended the centralized machine learning model to a federated learning setting with the aim to preserve the accuracy. Additionally, the project explored quantization techniques to achieve a smaller model, while keeping the prediction accuracy. Furthermore, the project also explored if data reconstruction methods could be used to further increase privacy for user data, while preserving prediction accuracy. The project successfully extended the implementation to a federated learning setting, as well as implementing the quantization techniques for size reduction, but the solution regarding data reconstruction was never implemented due to the time constraints. The project used a mixture of Python frameworks to extend the solution to a federated learning setting and to reduce the size of the model, resulting in one decentralized model, and three models with a reduced size of 48 %, 70 %, and 71 % compared to the decentralized model. The prediction rate of these models had similar prediction accuracy as the centralized model, indicating that the project was a success.
12

Reinforcement Learning assisted Adaptive difficulty of Proof of Work (PoW) in Blockchain-enabled Federated Learning

Sethi, Prateek 10 August 2023 (has links)
This work addresses the challenge of heterogeneity in blockchain mining, particularly in the context of consortium and private blockchains. The motivation stems from ensuring fairness and efficiency in blockchain technology's Proof of Work (PoW) consensus mechanism. Existing consensus algorithms, such as PoW, PoS, and PoB, have succeeded in public blockchains but face challenges due to heterogeneous miners. This thesis highlights the significance of considering miners' computing power and resources in PoW consensus mechanisms to enhance efficiency and fairness. It explores the implications of heterogeneity in blockchain mining in various applications, such as Federated Learning (FL), which aims to train machine learning models across distributed devices collaboratively. The research objectives of this work involve developing novel RL-based techniques to address the heterogeneity problem in consortium blockchains. Two proposed RL-based approaches, RL based Miner Selection (RL-MS) and RL based Miner and Difficulty Selection (RL-MDS), focus on selecting miners and dynamically adapting the difficulty of PoW based on the computing power of the chosen miners. The contributions of this research work include the proposed RL-based techniques, modifications to the Ethereum code for dynamic adaptation of Proof of Work Difficulty (PoW-D), integration of the Commonwealth Cyber Initiative (CCI) xG testbed with an AI/ML framework, implementation of a simulator for experimentation, and evaluation of different RL algorithms. The research also includes additional contributions in Open Radio Access Network (O-RAN) and smart cities. The proposed research has significant implications for achieving fairness and efficiency in blockchain mining in consortium and private blockchains. By leveraging reinforcement learning techniques and considering the heterogeneity of miners, this work contributes to improving the consensus mechanisms and performance of blockchain-based systems. / Master of Science / Technological Advancement has led to devices having powerful yet heterogeneous computational resources. Due to the heterogeneity in the compute of miner nodes in a blockchain, there is unfairness in the PoW Consensus mechanism. More powerful devices have a higher chance of mining and gaining from the mining process. Additionally, the PoW consensus introduces a delay due to the time to mine and block propagation time. This work uses Reinforcement Learning to solve the challenge of heterogeneity in a private Ethereum blockchain. It also introduces a time constraint to ensure efficient blockchain performance for time-critical applications.
13

DIFFERENTIAL PRIVACY IN DISTRIBUTED SETTINGS

Zitao Li (14135316) 18 November 2022 (has links)
<p>Data is considered the "new oil" in the information society and digital economy. While many commercial activities and government decisions are based on data, the public raises more concerns about privacy leakage when their private data are collected and used. In this dissertation, we investigate the privacy risks in settings where the data are distributed across multiple data holders, and there is only an untrusted central server. We provide solutions for several problems under this setting with a security notion called differential privacy (DP). Our solutions can guarantee that there is only limited and controllable privacy leakage from the data holder, while the utility of the final results, such as model prediction accuracy, can be still comparable to the ones of the non-private algorithms.</p> <p><br></p> <p>First, we investigate the problem of estimating the distribution over a numerical domain while satisfying local differential privacy (LDP). Our protocol prevents privacy leakage in the data collection phase, in which an untrusted data aggregator (or a server) wants to learn the distribution of private numerical data among all users. The protocol consists of 1) a new reporting mechanism called the square wave (SW) mechanism, which randomizes the user inputs before sharing them with the aggregator; 2) an Expectation Maximization with Smoothing (EMS) algorithm, which is applied to aggregated histograms from the SW mechanism to estimate the original distributions.</p> <p><br></p> <p>Second, we study the matrix factorization problem in three federated learning settings with an untrusted server, i.e., vertical, horizontal, and local federated learning settings. We propose a generic algorithmic framework for solving the problem in all three settings. We introduce how to adapt the algorithm into differentially private versions to prevent privacy leakage in the training and publishing stages.</p> <p><br></p> <p>Finally, we propose an algorithm for solving the k-means clustering problem in vertical federated learning (VFL). A big challenge in VFL is the lack of a global view of each data point. To overcome this challenge, we propose a lightweight and differentially private set intersection cardinality estimation algorithm based on the Flajolet-Martin (FM) sketch to convey the weight information of the synopsis points. We provide theoretical utility analysis for the cardinality estimation algorithm and further refine it for better empirical performance.</p>
14

Learning with constraints on processing and supervision

Acar, Durmuş Alp Emre 30 August 2023 (has links)
Collecting a sufficient amount of data and centralizing them are both costly and privacy-concerning operations. These practical concerns arise due to the communication costs between data collecting devices and data being personal such as text messages of an end user. The goal is to train generalizable machine learning models with constraints on data without sharing or transferring the data. In this thesis, we will present solutions to several aspects of learning with data constraints, such as processing and supervision. We focus on federated learning, online learning, and learning generalizable representations and provide setting-specific training recipes. In the first scenario, we tackle a federated learning problem where data is decentralized through different users and should not be centralized. Traditional approaches either ignore the heterogeneity problem or increase communication costs to handle it. Our solution carefully addresses the heterogeneity issue of user data by imposing a dynamic regularizer that adapts to the heterogeneity of each user without extra transmission costs. Theoretically, we establish convergence guarantees. We extend our ideas to personalized federated learning, where the model is customized to each end user, and heterogeneous federated learning, where users support different model architectures. As a next scenario, we consider online meta-learning, where there is only one user, and the data distribution of the user changes over time. The goal is to adapt new data distributions with very few labeled data from each distribution. A naive way is to store data from different distributions to train a model from scratch with sufficient data. Our solution efficiently summarizes the information from each task data so that the memory footprint does not scale with the number of tasks. Lastly, we aim to train generalizable representations given a dataset. We consider a setting where we have access to a powerful teacher (more complex) model. Traditional methods do not distinguish points and force the model to learn all the information from the powerful model. Our proposed method focuses on the learnable input space and carefully distills attainable information from the teacher model by discarding the over-capacity information. We compare our methods with state-of-the-art methods in each setup and show significant performance improvements. Finally, we discuss potential directions for future work.
15

Attack Strategies in Federated Learning for Regression Models : A Comparative Analysis with Classification Models

Leksell, Sofia January 2024 (has links)
Federated Learning (FL) has emerged as a promising approach for decentralized model training across multiple devices, while still preserving data privacy. Previous research has predominantly concentrated on classification tasks in FL settings, leaving  a noticeable gap in FL research specifically for regression models. This thesis addresses this gap by examining the vulnerabilities of Deep Neural Network (DNN) regression models within FL, with a specific emphasis on adversarial attacks. The primary objective is to examine the impact on model performance of two distinct adversarial attacks-output-flipping and random weights attacks. The investigation involves training FL models on three distinct data sets, engaging eight clients in the training process. The study varies the presence of malicious clients to understand how adversarial attacks influence model performance.  Results indicate that the output-flipping attack significantly decreases the model performance with involvement of at least two malicious clients. Meanwhile, the random weights attack demonstrates a substantial decrease even with just one malicious client out of the eight. It is crucial to note that this study's focus is on a theoretical level and does not explicitly account for real-world settings such as non-identically distributed (non-IID) settings,  extensive data sets, and a larger number of clients. In conclusion, this study contributes to the understanding of adversarial attacks in FL, specifically focusing on DNN regression models. The results highlights the importance of defending FL models against adversarial attacks, emphasizing the significance of future research in this domain.
16

Attack Strategies in Federated Learning for Regression Models : A Comparative Analysis with Classification Models

Leksell, Sofia January 2024 (has links)
Federated Learning (FL) has emerged as a promising approach for decentralized model training across multiple devices, while still preserving data privacy. Previous research has predominantly concentrated on classification tasks in FL settings, leaving  a noticeable gap in FL research specifically for regression models. This thesis addresses this gap by examining the vulnerabilities of Deep Neural Network (DNN) regression models within FL, with a specific emphasis on adversarial attacks. The primary objective is to examine the impact on model performance of two distinct adversarial attacks-output-flipping and random weights attacks. The investigation involves training FL models on three distinct data sets, engaging eight clients in the training process. The study varies the presence of malicious clients to understand how adversarial attacks influence model performance.  Results indicate that the output-flipping attack significantly decreases the model performance with involvement of at least two malicious clients. Meanwhile, the random weights attack demonstrates a substantial decrease even with just one malicious client out of the eight. It is crucial to note that this study's focus is on a theoretical level and does not explicitly account for real-world settings such as non-identically distributed (non-IID) settings,  extensive data sets, and a larger number of clients. In conclusion, this study contributes to the understanding of adversarial attacks in FL, specifically focusing on DNN regression models. The results highlights the importance of defending FL models against adversarial attacks, emphasizing the significance of future research in this domain.
17

Distributed Architectures for Enhancing Artificial Intelligence of Things Systems. A Cloud Collaborative Model

Elouali, Aya 23 November 2023 (has links)
In today’s world, IoT systems are more and more overwhelming. All electronic devices are becoming connected. From lamps and refrigerators in smart homes, smoke detectors and cameras in monitoring systems, to scales and thermometers in healthcare systems, until phones, cars and watches in smart cities. All these connected devices generate a huge amount of data collected from the environment. To take advantage of these data, a processing phase is needed in order to extract useful information, allowing the best management of the system. Since most objects in IoT systems are resource limited, the processing step, usually performed by an artificial intelligence model, is offloaded to a more powerful machine such as the cloud server in order to benefit from its high storage and processing capacities. However, the cloud server is geographically remote from the connected device, which leads to a long communication delay and harms the effectiveness of the system. Moreover, due to the incredibly increasing number of IoT devices and therefore offloading operations, the load on the network has increased significantly. In order to benefit from the advantages of cloud based AIoT systems, we seek to minimize its shortcomings. In this thesis, we design a distributed architecture that allows combining these three domains while reducing latency and bandwidth consumption as well as the IoT device’s energy and resource consumption. Experiments conducted on different cloud based AIoT systems showed that the designed architecture is capable of reducing up to 80% of the transmitted data. / En el mundo actual, los sistemas de IoT (Internet de las cosas) son cada vez más abrumadores. Todos los dispositivos electrónicos se están conectando entre sí. Desde lámparas y refrigeradores en hogares inteligentes, detectores de humo y cámaras para sistemas de monitoreo, hasta básculas y termómetros para sistemas de atención médica, pasando por teléfonos, automóviles y relojes en ciudades inteligentes. Todos estos dispositivos conectados generan una enorme cantidad de datos recopilados del entorno. Para aprovechar estos datos, es necesario un proceso de análisis para extraer información útil que permita una gestión óptima del sistema. Dado que la mayoría de los objetos en los sistemas de IoT tienen recursos limitados, la etapa de procesamiento, generalmente realizada por un modelo de inteligencia artificial, se traslada a una máquina más potente, como el servidor en la nube, para beneficiarse de su alta capacidad de almacenamiento y procesamiento. Sin embargo, el servidor en la nube está geográficamente alejado del dispositivo conectado, lo que conduce a una larga demora en la comunicación y perjudica la eficacia del sistema. Además, debido al increíble aumento en el número de dispositivos de IoT y, por lo tanto, de las operaciones de transferencia de datos, la carga en la red ha aumentado significativamente. Con el fin de aprovechar las ventajas de los sistemas de AIoT (Inteligencia Artificial en el IoT) basados en la nube, buscamos minimizar sus desventajas. En esta tesis, hemos diseñado una arquitectura distribuida que permite combinar estos tres dominios al tiempo que reduce la latencia y el consumo de ancho de banda, así como el consumo de energía y recursos del dispositivo IoT. Los experimentos realizados en diferentes sistemas de AIoT basados en la nube mostraron que la arquitectura diseñada es capaz de reducir hasta un 80% de los datos transmitidos.
18

REFT: Resource-Efficient Federated Training Framework for Heterogeneous and Resource-Constrained Environments

Desai, Humaid Ahmed Habibullah 22 November 2023 (has links)
Federated Learning (FL) is a sub-domain of machine learning (ML) that enforces privacy by allowing the user's local data to reside on their device. Instead of having users send their personal data to a server where the model resides, FL flips the paradigm and brings the model to the user's device for training. Existing works share model parameters or use distillation principles to address the challenges of data heterogeneity. However, these methods ignore some of the other fundamental challenges in FL: device heterogeneity and communication efficiency. In practice, client devices in FL differ greatly in their computational power and communication resources. This is exacerbated by unbalanced data distribution, resulting in an overall increase in training times and the consumption of more bandwidth. In this work, we present a novel approach for resource-efficient FL called emph{REFT} with variable pruning and knowledge distillation techniques to address the computational and communication challenges faced by resource-constrained devices. Our variable pruning technique is designed to reduce computational overhead and increase resource utilization for clients by adapting the pruning process to their individual computational capabilities. Furthermore, to minimize bandwidth consumption and reduce the number of back-and-forth communications between the clients and the server, we leverage knowledge distillation to create an ensemble of client models and distill their collective knowledge to the server. Our experimental results on image classification tasks demonstrate the effectiveness of our approach in conducting FL in a resource-constrained environment. We achieve this by training Deep Neural Network (DNN) models while optimizing resource utilization at each client. Additionally, our method allows for minimal bandwidth consumption and a diverse range of client architectures while maintaining performance and data privacy. / Master of Science / In a world driven by data, preserving privacy while leveraging the power of machine learning (ML) is a critical challenge. Traditional approaches often require sharing personal data with central servers, raising concerns about data privacy. Federated Learning (FL), is a cutting-edge solution that turns this paradigm on its head. FL brings the machine learning model to your device, allowing it to learn from your data without ever leaving your device. While FL holds great promise, it faces its own set of challenges. Existing research has largely focused on making FL work with different types of data, but there are still other issues to be resolved. Our work introduces a novel approach called REFT that addresses two critical challenges in FL: making it work smoothly on devices with varying levels of computing power and reducing the amount of data that needs to be transferred during the learning process. Imagine your smartphone and your laptop. They all have different levels of computing power. REFT adapts the learning process to each device's capabilities using a proposed technique called Variable Pruning. Think of it as a personalized fitness trainer, tailoring the workout to your specific fitness level. Additionally, we've adopted a technique called knowledge distillation. It's like a student learning from a teacher, where the teacher shares only the most critical information. In our case, this reduces the amount of data that needs to be sent across the internet, saving bandwidth and making FL more efficient. Our experiments, which involved training machines to recognize images, demonstrate that REFT works well, even on devices with limited resources. It's a step forward in ensuring your data stays private while still making machine learning smarter and more accessible.
19

Practical Privacy-Preserving Federated Learning with Secure Multi-Party Computation

Akhtar, Benjamin Asad 12 August 2024 (has links)
Master of Science / In a world with ever greater need for machine learning and artificial intelligence, it has be- come increasingly important to offload computation intensive tasks to companies with the compute resources to perform training on potentially sensitive data. In applications such as finance or healthcare, the data providers may have a need to train large quantities of data, but cannot reveal the data to outside parties for legal or other reasons. Originally, using a decentralized training method known as Federated Learning (FL) was proposed to ensure data did not leave the client's device. This method still was susceptible to attacks and further security was needed. Multi-Party Computation (MPC) was proposed in conjunction with FL as it provides a way to securely compute with no leakage of data values. This was utilized in a framework called SAFEFL, however, it was extremely slow. Reducing the computation overhead using programming tools at our disposal for this frame- work turns it from a unpractical to useful design. The design can now be used in industry with some overhead compared to non-MPC computing, however, it has been greatly im- proved.
20

Towards Reliable Federated Learning: Decentralization and Fault Tolerance

Zhilin Wang (17805221) 04 December 2024 (has links)
<p dir="ltr">In recent years, Federated Learning (FL) has emerged as a promising approach for training machine learning models across distributed data sources while preserving privacy. However, traditional FL faces significant challenges in reliabilities, including the risk of the single point of failure and vulnerabilities to adversarial attacks. </p><p dir="ltr">This research proposes an innovative framework, Blockchain-based FL(BCFL), leveraging blockchain to decentralize the FL system and enhance its reliability. To optimize BCFL in resource-constrained environments, we design incentive mechanisms and resource allocation schemes to maximize computational efficiency for clients engaging in both training and mining tasks. Additionally, we introduce a dual-task resource allocation scheme specifically tailored for Mobile Edge Computing (MEC), enabling edge servers to manage both BCFL and offloading tasks efficiently. To address the inherent risk of client dropout in distributed learning, we propose the HieAvg algorithm within a decentralized hierarchical FL framework, mitigating the impact of stragglers through historical weight-based aggregation. This research also introduces the Faker attack, a novel model poisoning approach that exploits weaknesses in similarity metrics commonly used in FL defenses. In response, we develop the Similarity of Partial Parameters (SPP) defense, a random parameter selection strategy that disrupts the predictability of similarity evaluations, offering robust protection against adaptive attacks.</p><p dir="ltr">Our research provides practical strategies to fortify FL systems against reliability vulnerabilities. This work lays the foundation for more secure, reliable, and efficient FL in various environments through decentralized architectures and novel fault </p>

Page generated in 0.0758 seconds