• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 4
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Active control of radial rotor vibrations : identification, feedback, feedforward, and repetitive control methods /

Tammi, Kari. January 1900 (has links) (PDF)
Thesis (doctoral)--Helsinki University of Technology, 2007. / Includes bibliographical references (p. 142-151). Also available on the World Wide Web.
22

A regression-based approach for simulating feedfoward active noise control, with application to fluid-structure interaction problems

Ruckman, Christopher E. 06 June 2008 (has links)
This dissertation presents a set of general numerical tools for simulating feedforward active noise control in the frequency domain. Feedforward control is numerically similar to linear least squares regression, and can take advantage of various numerical techniques developed in the statistics literature for use with regression. Therefore, an important theme of this work is to look at the control problem from a statistical point of view, and explore the analogies between feedforward control and basic statistical principles of regression. Motivating the numerical approach is the need to simulate active noise control for systems whose dynamics must be modeled numerically because analytical solutions do not exist, e.g., fluid-structure interaction problems. Plant dynamics for examples in the present work are modeled using a finite-element / boundary-element computer program, and the associated numerical methods are general enough for us with many types of problems. The derivation is presented in the context of active structural-acoustic control (ASAC), in which sound radiating from a vibrating structure is controlled by applying time-harmonic vibrational inputs directly on the structure. First, a feedforward control simulation is developed for a submerged spherical shell using both analytical and numerical techniques; the numerical formulation is found by discretizing the integrations used in the analytical approach. ASAC is shown to be effective for controlling radiation from the spherical shell. For a point-force disturbance at low frequencies, a single control input can reduce the radiated power by up to 20 dB (ignoring the possibility of measurement noise). A more general numerical methodology is then developed based on weighted least-squares regression in the complex domain. It is shown that basic regression diagnostics, which are used in the statistics literature to describe the quality and reliability of a regression, can be used to model the effects of error sensor measurement noise to produce a more realistic simulation. Numerical results are presented for a finite-length, fluid-loaded cylindrical shell with clamped, rigid end closures. It is shown that when the controller reduces the radiated power by less than 2 dB, the control simulation is usually invalid for statistical reasons. Also developed are confidence intervals for the individual control input magnitudes, and prediction intervals which help evaluate the sensitivity to measurement noise for the regression as a whole. Collinearity, a type of numerical ill-conditioning that can corrupt regression results, is demonstrated to occur in an example feedforward control simulation. The effects of collinearity are discussed, and a basic diagnostic is developed to detect and analyze collinearity. Subset selection, a numerical procedure for improving regressions, is shown to correspond to optimizing actuator locations for best control system performance. Exhaustive-search subset selection is used to optimize actuator locations for a sample structure. Finally, a convenient method is given for investigating alternate controller formulations, and examples of several alternate controllers are given including a wavenumber-domain controller. Numerical results for a cylindrical shell give insight to the mechanisms used by the control system, and a new visualization technique is used to relate farfield pressure distributions to surface velocity distributions using wavenumber analysis. / Ph. D.
23

Feedforward temperature control using a heat flux microsensor

Lartz, Douglas John 30 June 2009 (has links)
The concept of using heat flux measurements to provide the input for a feedforward temperature control loop is investigated. The feedforward loop is added to proportional and integral feedback control to increase the speed of the response to a disturbance. Comparison is made between the feedback and the feedback plus feedforward control laws. The control law with the feedforward control loop is also compared to the conventional approach of adding derivative control to speed up the system response to a disturbance. The concept was tested using a simple flat plate heated on one side and exposed to a step change in the convective heat loss on the other side. A controller was constructed using an analog computer to compare the feedforward and feedback approaches. The conventional control approach was tested using a commercial temperature controller. The feedback and feedforward approaches were also simulated. The results showed that the feedforward control approach produced significant improvements in the response to the disturbance. The integral of the squared error between the setpoint and actual temperature was reduced by approximately 90 percent by the addition of feedforward control to the feedback control. The maximum temperature deviation from the setpoint was also reduced by 70 percent with the addition of feedforward control. Qualitative agreement was obtained between the experimental results and the computer simulations. The conventional approach of adding derivative control to the proportional and integral control showed an increase of 20 percent in the integral of the squared error, but offered no significant improvement in the maximum temperature deviation. The addition of derivative control also caused the stability of the system to decrease, while the addition of feedforward had no adverse effects on the system stability. The concept of using heat flux measurements for feedforward control was successfully demonstrated by both simulations and experiments. / Master of Science
24

Balance mechanisms during standing and walking in young and older adults

Lee, Sungeun. January 2010 (has links)
Thesis (M.Sc.)--University of Alberta, 2010. / A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Rehabilitation Science, Faculty of Rehabilitation Medicine. Title from pdf file main screen (viewed on February 16, 2010). Includes bibliographical references.
25

Design and Implementation of a Strategy for Path Tracking on Autonomous Heavy-Duty Vehicles

Törnroth, Oscar, Nyberg, Truls January 2018 (has links)
In this thesis, a combined feedforward and feedback controller for improved path tracking on autonomous heavy-duty vehicles is designed and implemented. The steering wheel is controlled in order to follow a reference curvature, computed by a higher-level MPC, responsible for minimizing the distance to a planned path. The steering dynamics, from steering wheel via wheel angles, to a measurable vehicle curvature, is modeled, and a conversion from desired curvature gain to input angle to the steering wheel is derived. Tests with an autonomous Scania R580 show that the desired curvature can be followed with satisfactory small error, both in a designed slalom path and on a more generic test track. By utilizing future curvature values computed by the MPC, a non-causal feedforward controller can reduce the delay from input to the steering wheel to a measured response in curvature, by almost two thirds, compared to the currently implemented solution. Compared to an open-loop control design, tests in simulation show that a feedback controller can reduce errors in curvature gain. However, with the identified steering dynamics and the improved conversion from steering wheel angle to curvature, no further improvement in the curvature gain was seen when implementing the feedback controller in the test vehicle. Care must also be taken not to introduce instability in the system when the feedback controller is implemented in series with a high-level MPC. / Den här rapporten beskriver design och implementering av en regulator med kombinerad framkoppling och återkoppling för förbättrad banföljning av autonoma tunga fordon. Fordonets ratt styrs för att följa en kurvaturreferens beräknad av en överordnad MPC, ansvarig för att minimera avståndet till en planerad bana. Dynamiken i styrningen, från ratten via hjulvinklarna till en mätbar kurvatur för fordonet, är modellerad. En översättning från önskad förstärkning av kurvatur till insignal för rattvinkeln är också framtagen. Tester utförda med en autonom Scania R580 visar att den önskade kurvaturen kan följas med tillfredsställande litet fel, både i en egendesignad slalombana och i en mer generisk testbana. Genom att utnyttja framtida referensvärden för kurvatur beräknade av MPC:n, kan en icke-kausal framkopplande regulator minska fördröjningen från insignal till ratten till en mätbar respons i fordonets kurvatur. Jämfört med den nuvarande lösningen minskas fördröjningen med nästan två tredjedelar. Jämfört med en öppen styrning visar tester i simulering att en återkoppling i regulatorn kan minska stationära fel i kurvatur. Med implementeringen av den identifierade styrdynamiken och den förbättrade översättningen från rattvinkel till kurvatur, syntes dock med återkoppling ingen ytterliggare förbättring i testfordonet. Implementering av den återkopplande regulatorn i serie med den överordnade MPC:n behöver också göras med omsorg för att inte introducera instabilitet i systemet.

Page generated in 0.0793 seconds