Spelling suggestions: "subject:"needs -- conomic aspects"" "subject:"needs -- c:conomic aspects""
1 |
Economic considerations for expanded feeding of livestock in the Pacific NorthwestGrimshaw, Paul R. 24 June 1971 (has links)
Several agricultural and related industry groups in the Pacific
Coast states have expressed concern about the competitive position
of these states in the production of feed grains and livestock products.
This study was directed toward the investigation of these
concerns.
In order to permit the real world situation, with its accompanying
multivariable reality, to be reduced to workable size, a
linear programming model was designed. The 48 contiguous states
were divided into five regions with smaller regions in the western
United States to permit a more detailed analysis of the West.
The quantities of feed grains produced in each state were
determined and summed for the states in a region. The quantities
of fed beef, pork, broilers, turkeys, eggs, and milk (the products
of the major grain consuming classes of livestock) demanded in each
state were computed.
A matrix of transportation costs between regions was developed
for feed grains and for the livestock products of the model. Regional weighted average prices received by farmers for each feed grain and
for each livestock product were determined.
The model was then utilized to indicate production of all the
livestock products required for consumption by region at the least
cost of producing the products.
Optimal solutions were obtained using 1968 and 1969 relative
prices and these solutions were analyzed. The analysis indicates
that generally the states which are deficit in beef, pork, broiler,
and egg production have a slight economic advantage in producing
these products for local consumption until the locally produced feed
supply is utilized. Each region in the model produced the milk consumed
in that region. Region I (Oregon and Washington) has traditionally
been self-sufficient in turkey production, and Region III
(California) has been a turkey exporting state. According to the
model, both of these regions should import the turkey consumed in
the region to derive optimum economic benefits. These conclusions
are based on the relative prices and transportation costs that
existed in 1968 and 1969.
After the solutions were obtained, the price of wheat in Region I
was varied using a parametric procedure available with the linear
programming package. Results of this analysis using 1968 and 1969
relative prices were described. The parametric analysis indicated
that at the 1968 price of wheat in Region I more than twice the
quantity of wheat allocated to livestock feeding in the basic model
could have been economically utilized and would have reduced costs
of producing the livestock products consumed in Region I.
The 1969 wheat price in Region I was sufficiently low that the
parametric analysis indicated an allocation of over four times the
quantity used in the basic model for livestock feeding. The basic
model utilized 1,043,000 tons of wheat for livestock feeding.
It can be concluded from the analysis that Region I could have
utilized much larger quantities of wheat for livestock feeding than
was allocated for feeding in the basic model. Based on the relative
feed ingredient costs that existed in 1968, Region I producers of
pork, broilers, eggs, and milk are competitive with other regions
in supplying the quantities of these products demanded for regional
consumption.
The 1969 relative prices made Region I even more competitive
in producing pork, broilers, eggs, and milk, and added beef production
as an economically advantageous alternative.
These conclusions are based only on feed ingredient and transportation
costs. If non-feed costs and relative feeder cattle costs
for beef production are included, Region I producers appear to have
a slight margin for producing beef,for local consumption until
locally produced feed supplies are exhausted. / Graduation date: 1972
|
2 |
Evaluation of protein supplementsTaylor, James Willett January 1956 (has links)
Call number: LD2668 .T4 1956 T38 / Master of Science
|
3 |
The Effects of Ethanol Policy on Cattle ProductionBraun, Dane Curtis January 2009 (has links)
Corn-based ethanol production has increased dramatically in the past ten years, causing an increase in demand for corn by ethanol producers and an increase in production of ethanol by-products such as distillers' grains. The increase in ethanol production can be attributed to ethanol policy at the state and federal levels. Because of the increase in production of corn-based ethanol, cattle producers face greater competition for a major feed source, corn, and greater supply of an emerging feed source, distillers' grains. The objective of this study is to analyze and quantify the effects of ethanol policy on cattle production. A theoretical model and an econometric model are used to fulfill the objectives of this study. The theoretical model contains an ethanol model and a general livestock model. Results of the theoretical model present the possibilities of ethanol policy affecting cattle production. The econometric model identifies the indirect and direct effects of ethanol policy on cattle production. The results of the econometric model indicate that there is a relationship between ethanol policy, specifically the Renewable Fuel Standard, and cattle production.
|
4 |
Economic analysis of early weaning for dairy calves using prestarter and varied milk sources in California, Kansas and WisconsinNelson, Leiann Heid. January 1984 (has links)
Call number: LD2668 .T4 1984 N44 / Master of Science
|
5 |
Supplementing day-old pigs with bovine colostrum or milk replacerBandyk, Cathryn A. January 1986 (has links)
Call number: LD2668 .T4 1986 B36 / Master of Science
|
6 |
Exploring the use of technical indicators as pricing guides in feeder cattle production criteriaSmith, Jonathan David January 1989 (has links)
The objective of this study was to examine the use of technical indicators, in an econometric context, as guides in making pricing decisions relative to feeder cattle production. Technical indicators were developed for both the short and long term. Short term indicators were designed to capture divergence/convergence between the Relative Strength Index and the futures price stream to form the Price Linked to Divergence index. A long term indicator using an average difference in price over a longer period was developed to form the Price Linked to Trend index. These indicators were used in the econometric models which in conjunction with cash production costs formed a hold/price/sell decision framework.
Analysis was conducted on fall-to-spring, spring-to-fall, and fall-to-fall production programs. Results for the three production programs in both the in and out-of-sample environments showed that on average a futures price in the top half of the futures price range was captured. This resulted in average improvement in returns through hedging for every program. / Master of Science
|
7 |
Cattle forage systems to manage risksBouchet, Frederic C. January 1983 (has links)
M.S.
|
8 |
Profits from several feeding systems followed by beef cattlemen of Southwest VirginiaNelson, G. V. January 1930 (has links)
The farmer that fed silage made a profit of $606.20 for the twenty-six years or had received an average profit of $23.31 each year per steer. The farmer that fed hay and straw made a profit of $298.76 for the twenty-six years or an average profit of $11.49 each year per steer. The farmer that fed stover and corn meal made a profit of $140.56 for the twenty-six years or an average profit each year of $5.40 per steer.
From a survey of seventy farms and 4,380 head of cattle, we find that the average carload shipment is about three care per cattlemen in Southwest Virginia allowing twenty head to the car, this would mean sixty per year. At this rate the farmer that fed silage would have made $36,372.00. The farmer that fed hay and straw would have made $17,925.00 and the farmer that fed stover and corn meal would have made $8,433.60.
The cost of silage for the twenty-six years was $412.04, for hay and straw $521.54, and for stover and corn meal $439.70. / M.S.
|
9 |
The effects of changing energy costs on the competitive position of the Kansas cattle feeding industryWard, Mark Charles. January 1984 (has links)
Call number: LD2668 .T4 1984 W365 / Master of Science
|
10 |
A genetic analysis of biological and economic efficiency of post-weaning feedlot performance in beef cattleVan der Westhuizen, Robert Rolfe 03 1900 (has links)
Thesis (PhD (Agric))--University of Stellenbosch, 2005. / ENGLISH ABSTRACT: It is generally accepted that feed intake and growth (gain) are the most important economic
components when calculating profitability in a growth test or feedlot. Feeding cost of animals is a
major determinant of profitability in livestock production enterprises. Genetic selection to improve
feed efficiency aims to reduce the cost of feeding in beef cattle production and thereby improve
profitability.
The objective of this study was to define a clear selection objective to enable South African beef
breeders and especially the feedlot industry to select for post-weaning growth or feedlot
performance and to identify factors influencing profitability in a feedlot environment.
Because of the recording of individual feed intake and weight gain values in the South African
Agricultural Research Councils' centralized growth tests, it was also possible to calculate a
phenotypic value for feedlot profitability (R-value) for each bull tested in a centralized growth test.
(Co)variances, using multitrait as well as random regression models, for and between feedlot
profitability, weaning weight and other production, reproduction and efficiency traits were
estimated. Residual feed intake (RFI) and feed conversion ratio (FCR) as efficiency traits were also
compared to growth (average daily gain (ADG), weaning weight (WW) and shoulder height
(SHD)), reproductive (scrotum circumference (SCR)) and profitability (feedlot profitability) traits
measured in growth tests of young Bonsmara bulls.
Consequently, a single post-weaning growth selection index value based on the economic and
breeding values of different selection criteria related to feedlot profitability was composed.
(Co)variance components, heritabilities and genetic correlations for and between initial weight
(lW), final weight (FW), total feed intake (FI) and shoulder height (SHD) were estimated through
the use of multitrait restricted maximum likelihood (REML) procedures. These breeding values
(EBV s) were then used in a selection index to calculate a single economical value for each animal. This economical value is an indication of the gross profitability value or gross test value (GTV) of
the animal in a post-weaning growth test.
The heritability estimate of 0.36 for R-value, obtained from the multitrait analysis, shows that this
trait is genetically inherited and that it can be selected for. The heritability for R-value obtained
from the single trait random regression model varied between 0.57 and 0.62. The genetic
correlations between the R-value and the other traits, obtained from the multitrait analysis, varied
from negligible to high. The heritability estimated for FCR was 0.34 and for RFl 0.31 with a
genetic correlation estimate of 0.75 between the traits. The estimated genetic correlation between
profitability (R-value) and FCR and RFl were -0.92 and -0.59, respectively. The genetic
correlation estimate of -0.92 between FCR and R-value is largely due to the part-whole relationship
between these two traits. This is also shown in their genetic trends. The genetic correlations and
expected correlated responses between RFl and FCR with R-value suggest that indirect selection for
R-value through the direct selection for FCR and/or RFl will result in slower genetic progress in Rvalue
than direct selection for R-value. However, where the R-value cannot be calculated and/or
where direct selection for R-value is not possible, it would be better to select indirectly for R-value
through the use of FCR rather than RF!. Consequently, a regression equation was developed (with
an R2 of 0.82) to estimate a feed intake value for all performance-tested Bonsmara bulls which were
group fed and whose feed intakes were unknown. These predicted feed intake values made it
possible to calculate a feedlot or post-weaning growth profitability value (R-value) for all tested
bulls even where individual feed intakes were unknown. Subsequently, an R-value for each bull was
calculated in a favourable economic environment (FEE), an average economic environment (AEE)
and in an unfavourable economic environment (VEE). The high Pearson and Spearman correlations
between the EBV s based on AEE and the other two environments suggested that the average
economic environment could be used to calculate EBVs for R-value or feedlot growth profitability.
It is therefore not necessary to change the carcass, weaner or feed price on a regular basis to account
for possible re-rankings based on R-value EBVs.
Heritabilities for lW, FW, Fl and SHD were 0.41, 0.40, 0.33 and 0.51, respectively. The highest
genetic correlations between these traits were the 0.78 (between lW and FW) and 0.70 (between Fl
and FW). GTV values varied between -R192.l7 and R231.38, with an average of R9.31. The
Pearson correlations between EBVs (for production and efficiency traits) and GTV range from
-0.51 to 0.68. The lowest correlation (closest to zero) was 0.26 between the Kleiber ratio (KLB) and
GTV. Correlations of 0.68 and -0.51 were estimated between average daily gain (ADG) and GTV
and feed conversion ratio (FCR) and GTV, respectively. The heritabilities of the different traits
included in the selection index suggest that it is possible to select for a GTV. The selection index can benefit feedlotting In selecting offspring of bulls with high GTV values to maximize
profitability.
The Pearson and Spearman correlations between the R-value EBVs and the index values (GTV)
were very high (0.97). This high correlation of 97% indicates that it is not important which method
is used to calculate a genetic post-weaning growth of feedlot profitability value. The selection index
value is, however, more simplified than the feedlot profitability with less assumption. Therefore, it
is recommended that the post-weaning selection index value be used as a selection objective in
breeding programmes to improve post-weaning growth profitability rather than the more complex
feedlot profitability value. / AFRIKAANSE OPSOMMING: 'N GENETIESE ANALIESE VAN DIE BIOLOGIESE EN EKONOMIESE
DOELTREFFENTHEID VAN NASPEENSE GROEI IN VLEISBEESTE IN DIE VOERKRAAL: Dit word algemeen aanvaar dat voerinname en groei die twee ekonomies mees belangrike
komponente in die berekening van 'n naspeense groei- of voerkraalwinsgewindheidswaarde is.
Voerkostes is 'n bepalende faktor van winsgewindheid in enige lewendehawe boerderypraktyk.
Seleksie om voerdoeltreffendheid te verbeter, verminder dus die voerkostes in vleisbeesproduksie
en gevolglik 'n verhoging in die winsgewindheid.
Die doelwit van die studie was om faktore te identifiseer wat 'n invloed op winsgewindheid in die
voerkraaiomgewing het asook om 'n duidelike seleksiedoelwit te formuleer wat die Suid-
Afrikaanse vleisbeesteiers en veral die voerkraalbedryf instaat sal kan stelom vir naspeense groeidoeltreffendheid
ofvoerkraalwinsgewindheid te selekteer.
As gevolg van die aantekening en rekordhouding van weeklikse individuele voennnames en
gewigstoenames van alle prestasiegetoetsde bulle, in 'n gesentraliseerde groeitoets deur die Suid-
Afrikaanse Landbou Navorsingsraad getoets, was dit moontlik om vir elk van hierdie bulle 'n
fenotipiese voerkraalwinsgewindheidswaarde (R-waarde) te kon bereken.
(Ko)variansies is vir en tussen voerkraalwinsgewindheid, speengewig en ander produksie-,
reproduksie- en doeltreffendheidseienskappe bereken deur van meereienskap en ewekansige
regressie modelle gebruik te maak. Twee doeltreffendheidseienskappe naamlik residuele
voerinname (RFI) en voeromsetverhouding (FCR) is ook met groei (gemiddelde daaglikse toename
(ADG), speengewig (WW) en skouerhoogte (SHD)), reproduksie (skrotumomvang (SCR)) en
winsgewindheidseienskappe (voerkraalwinsgewindheid (R-waarde)) vergelyk, om sodoende te
bepaal watter een die mees geskikte eienskap is om indirek vir voerkraalwinsgewindheid of groei, gebaseer op teeltwaardes en ekonomiese waardes vir die verskillende eienskappe, wat 'n
invloed op naspeense groei winsgewindheid het, gestruktueer.
(Ko)variansiekomponente, oorerflikhede en genetiese korrelasies vir en tussen begingewig (lW),
eindgewig (FW), voerinname (FI) en skouerhoogte (SHD) is bereken deur van 'n meereienskap
(REML) ontleding gebruik te maak. Hierdie teelwaardes (EBVs) is vervolgens in 'n seleksie-indeks
gebruik om 'n enkele ekonomies of voerkraal-winsgewindheids seleksie-indekswaarde (GTV) vir
elke dier te bereken. Hierdie ekonomiese waarde is 'n aanduiding van die bruto
winsgewindheidswaarde ofbruto toetswaarde (GTV) van die dier in 'n naspeentoets.
Die oorerflikheid, vanuit die meereienskapontleding vir R-waarde beraam, was 0.36. Hierdie
oorerflikheid dui daarop dat die eienskap oorerflik is en dat dit wel moontlik is om daarvoor te
selekteer. Die ooreflikhede van R-waarde, voorspel vanuit die enkeleienskap ewekansige regressieontleding
varieer tussen 0.57 en 0.62. Die genetiese korrelasie tussen R-waarde en ander
eienskappe, vanuit die meereienskap ontleding beraam, varieer tussen weglaatbaar klein tot hoog.
Die oorerflikheid van FeR was 0.34 en van RFI 0.31 met 'n genetiese korrelasie van 0.75 tussen die
twee eienskappe. Die genetiese korrelasie tussen R-waarde en FeR, en R-waarde en RFI was
onderskeidelik -0.92 en -0.59. Die rede vir die hoë negatiewe genetiese korrelasie tussen R-waarde
en FeR van -0.92 is omdat dieselfde komponente in die berekening van die twee eienskappe
gebruik is. Dit word ook in die genetiese tendense weerspeël. Die genetiese korrelasies en verwagte
gekorreleerde responsies tussen R-waarde en FeR, en tussen R-waarde en RFI dui daarop dat
stadiger genetiese vordering verkry sal word in R-waarde deur direkte seleksie vir beide FeR en
RFI as wat verkry sal word deur die direkte seleksie vir R-waarde. Wanneer 'n R-waarde egter nie
bereken kan word nie of waar dit nie moontlik is om direk vir R-waarde te selekteer nie, sal
vinniger genetiese vordering in R-waarde gemaak word deur die direkte seleksie vir FeR as vir
RF!. 'n Regressievergelyking is geformuleer (met 'n R2 van 0.82) om vir alle prestasiegetoetsde
bulle, waar bulle in 'n groep gevoer is en individuele voerinnames onbekend is, 'n
voerinnamewaarde te voorspel. Hierdie voorspelde voerinnames maak dit moontlik om vir elke
prestasiegetoetsde bul ,'n naspeengroei- of voerkraalwinswaarde (R-waarde) te bereken, al is hulle
individuele voerinnames onbekend. Vervolgens is drie verskillende R-waarde vir vleisproduksie vir
elke bul bereken naamlik, in 'n gunstige ekonomiese omgewing (FEE), 'n gemiddelde ekonomiese
omgewing (AEE) en 'n ongunstige ekonomiese omgewing (VEE). Die hoë Pearson en Spearman
korrelasies tussen die EBVs vir R-waarde, bereken in die AEE en die EBVs in die ander twee
ekonomiese omgewings, dui daarop dat die AEE gebruik kan word om EBVs vir naspeense groeiof
voerkraalwins te bereken. Dit is dus nie nodig om op 'n gereelde grondslag die karkasprys,
lewendige speenkalfprys of die voerprys te verander nie. Oorerflikhede, vanuit die meereienskap ontledings VIr lW, FW, FI en SHD verkry, was
onderskeidelik 0.41, 0.40, 0.33 en 0.51. Die hoogste genetiese korrelasies tussen die eienskappe
was 0.78 tussen lW en FW en 0.70 tussen FI en FW. GTV indekswaardes varieer tussen -Rl92.17
en R231.38 met 'n gemiddelde waarde van R9.31. Die Pearson korrelasies tussen die EBVs van
produksie- en doeltreffenheidseienskappe en GTV het tussen -0.51 en 0.68 gevarieer. Die
korrelasie naaste aan zero, van 0.26, was die korrelasie tussen GTV en die Kleiber-verhouding. Die
korrelasies tussen GTV en ADG, en GTV en FeR was onderskeidelik 0.68 en -0.51. Die
oorerflikhede van die verskillende eienskappe wat in die seleksie-indeks ingesluit is, dui daarop dat
die indekswaarde weloorerflik is en dat seleksie hiervoor wel moontlik is. Hierdie indekswaarde
kan deur die voerkraaiindustrie gebruik word om nageslag van diere met hoë GTV waardes te
selekteer om sodoende maksimum wins uit die voerkraai te genereer.
Die Pearson en Spearman korrelasies tussen R-waarde EBVs en die indekswaardes (GTV) was
besonder hoog (0.97). Hierdie hoë korrelasie dui daarop dat dit geen verskil sal maak watter een
van die twee metodes gebruik word in die berekeninge van 'n naspeense groei- of
voerkraalwinswaarde nie. Die seleksie-indeks metode is egter minder gekompliseerd met minder
aannames as in die geval van die rekeningkundige fenotipiese benadering (R-waarde). As gevolg
hiervan, word die naspeense seleksie-indeks waardes (GTV) aanbeveel om te gebruik as 'n
teeldoelwit in telingsprogramme om naspeense groei- of voerkraaiwins geneties te verbeter, eerder
as die meer gekompliseerde fenotipiese voerkraaiwins (R-waardes) metode.
|
Page generated in 0.0882 seconds