• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development of a test rig to determine fouling factors of feedwater heaters

Hallatt, Nicolaas 04 May 2020 (has links)
Feed water heaters are large shell and tube heat exchangers. They from part of the Rankine cycle used in coal fired power plants with the main purpose being the improvement of the overall cycle efficiency. Like most heat exchangers, feed water heaters suffer from fouling. Fouling is defined as “any undesirable deposit on heat exchanger surfaces that increases resistance to heat transmission”. In the design of heat exchangers, fouling is accommodated by adding additional surface area to the heat exchanger. The amount of additional area is determined by the use of fouling factors. Although this is the only wide-spread method accepted in industry, the fouling factors in use are outdated, generally considered conservative and lead to oversized heat exchangers. The purpose of this study was to design and build a test rig that can accurately measure fouling factors of feed water heater tubes that has been in service for a full life cycle. A comprehensive literature study was performed to decide on the most effective test method, as well as the required instrument type and accuracy. The best method was found to be where the overall heat transfer coefficient for a fouled tube, outside cleaned tube (half clean) and clean tube was measured. The measured values are then converted to the internal, external and overall fouling factors. Validation test were done on the test rig. These included energy balance tests, theoretical comparison tests and repeatability tests. The results of all tests were acceptable and within measurement uncertainty limits. Five sample test tubes, obtained from a 30 year old LP heater at an Eskom power station, were tested. The results indicated that the average measured fouling factors were less than 20% of the commonly used HEI fouling factors. This is significantly lower and confirms that the fouling factors in use for this specific case are conservative. The test rig proved to be accurate and effective in measuring the fouling factors. Although the tests shows promising results, the small amount of tubes tested from only one heat exchanger are not sufficient to make meaningful conclusions. The test rig is now ready for a future study where a large sample of tubes can be tested.
2

Thermal analysis of a feedwater heater tubesheet through coupling of a 1D network solver and CFD

Jordaan, Haimi January 2019 (has links)
A feedwater heater is a typical component in power plants which increases the cycle efficiency. Over the last decade, renewable energies have significantly developed and been employed in the power grid. However, weather conditions are inconsistent and therefore produce variable power. Fossil fuel power stations are often required to supplement the variable renewable energies, which increased the rate of power cycling to an unforeseeable extent over the past decade. Power cycling results in changes in the flow rate, pressure, and temperature of a feedwater heater’s inlet flows. In a tubesheet-type feedwater heater, these transients induce cycling stress in the tubesheet and failures due to thermal fatigue occur. The header-type feedwater is currently employed in high pressure applications as it is more resistant to thermal fatigue compared to the tubesheet-type. However, the tubesheet-type is more cost effective to construct and maintain. It would be advantageous if the cyclic thermal stresses in the tubesheet can be better analysed and alleviated to support the use of the tubesheet-type. A detailed transient temperature distribution of the tubesheet is required to understand the thermal fatigue. Normally, engineers opt towards a full CFD to obtain such results. However, the size and complexity of a feedwater heater is immense and cannot be simulated practically solely using CFD spatial elements. This study developed a multiscale approach that thermally couples 1D network elements, CFD spatial elements, and macroscopic heat transfer correlations to reduce the computational expense substantially. The combination of the various selected techniques and the specific application of this methodology is unique. This approach is capable of obtaining the detailed transient temperature distribution of the tubesheet in a reasonable time, as well as include the effects of the upstream and downstream components within the network model. The methodology was implemented using Flownex and Ansys Fluent for the 1D network and CFD solvers, respectively. The internal tube flow was modelled using 1D network elements, while the steam was modelled with CFD. Thermal discretisation, mapping, and convergence were considered to create a robust methodology not limited to feedwater heaters only. Additionally, a method was developed to analyse flow maldistribution in tube-bundles using the coupled 1D-3D approach. The implementation of the methodology consists of two parts, of which one is for development purposes, and the other serves as a demonstration. The development was done on a simple TEMA-FU heat exchanger which is representative of a feedwater heater. The methodology was tested by varying the primary fluid’s flow rates, changing the fluid media, and conducting transient simulations. The temperature distributions obtained were compared against a full CFD model and corresponded very well with errors less than 4%. A reduction in computational time of more than 40% was achieved but is highly dependent on the specific problem. Improvements to be made in future studies include the accuracy of the laminar case method and the stability of the flow maldistribution algorithm. The methodology was demonstrated by applying it to an existing industrial feedwater heater. No plant data was available to use for input conditions and therefore were assumed. The steam in the DSH was modelled using 3D CFD elements and the tube flow with 1D network elements. The condensing zone’s heat transfer was approximated using an empirical correlation. A steady state case was simulated and the outlet temperatures corresponded well with the manufacturer’s data. The temperature distribution of the tubesheet and surrounding solids were obtained. Finally, assumed sinusoidal transient perturbations to the inlet conditions were imposed. It was evident that the thermal gradients of both sides of the tubesheet were misaligned which highlights the thermal lag and inertia that cause differential temperatures. The 1D-CFD methodology was developed successfully with results that proved to correspond well, for a wide range of conditions, to full CFD. The methodology was applied and can be, in future work, validated with experimental results or extended by modelling upstream and downstream components in the network solver. / Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2019. / Mechanical and Aeronautical Engineering / MEng (Mechanical Engineering) / Unrestricted
3

Component development for a high fidelity transient simulation of a coal-fired power plant using Flownex SE

Le Grange, Willie 25 February 2019 (has links)
Large coal-fired power stations are designed to be run predominantly at full load and optimum conditions. The behaviour of plants, operating at low load and varying conditions, is getting more and more attention due to the introduction of variable renewable generation on the grid. Consequently, the need for a fully transient high-fidelity system based model has grown, as this will enable one to study the behaviour of plants under such non-ideal conditions. This report details the development of a feedwater heater, deaerator and turbine component for such a high-fidelity transient system model using the Flownex Simulation Environment, a onedimensional thermohydraulic network solver. The components have been modelled all with the aim of using minimal design input data. The feedwater heater component model includes transient effects and thermodynamic relations to represent aspects such as heater performance, level control and transient inertia. In determining the heat transfer characteristics, the model makes use of plant-performance data and correlates the amount of heat transfer by using the feedwater mass flow as the load indicating parameter. This approach eliminates the need for specific geometrical details to calculate the effective heat transfer area. The level control is modelled by using a level representation built from using heat exchanger design methods. The turbine component is modelled by using Fuls’ Semi-Ellipse law or the pressure drop modelling and Ray’s semi-empirical method for the efficiency modelling. The model also contains transient effects, which include thermal inertia due to the shaft and casing, and rotational inertia due to the shaft. The deaerator component is modelled by adapting the model presented by Banda, and modifying the model to work under various conditions. This involved using curve fit methods in Flownex to use input data to model the pressure drop over the main condensate valve. Each of the mentioned components was validated and verified with plant data and finally packaged into a compound component which is a component consisting of a subnetwork in Flownex. These compound components further contain design inputs which are easily accessible by the user. The component models were integrated into larger networks in which various scenarios can be run. A short transient scenario was run on the low-pressure feedwater train of a specific power station. The scenario involved a turbine trip where the bled steam valves for the heaters were closed suddenly. The speed of the valves closing was however unknown and after closing the valves in approximately 10 seconds, results agreed relatively well with plant data. This illustrated the short transient capabilities of the feedwater heater component model. The three component models (feedwater heater, turbine and deaerator) were finally integrated into a regenerative Rankine cycle and was set up using minimal design data. The boiler, condenser and condensate pump were set as boundary conditions in the network but all extraction points for the network were connected. Steady-state results were obtained for various load cases and the main temperature, flow and pressure results were compared. Results agree well with plant data, even at low load conditions
4

Solar thermal augmentation of the regenerative feed-heaters in a supercritical Rankine cycle with a coalfired boiler / W.L. van Rooy

Van Rooy, Willem January 2015 (has links)
Conventional concentrating solar power (CSP) plants typically have a very high levelised cost of electricity (LCOE) compared with coal-fired power stations. To generate 1 kWh of electrical energy from a conventional linear Fresnel CSP plant without a storage application, costs the utility approximately R3,08 (Salvatore, 2014), whereas it costs R0,711 to generate the same amount of energy by means of a highly efficient supercritical coal-fired power station, taking carbon tax into consideration. This high LCOE associated with linear Fresnel CSP technology is primarily due to the massive capital investment required per kW installed to construct such a plant along with the relatively low-capacity factors, because of the uncontrollable solar irradiation. It is expected that the LCOE of a hybrid plant in which a concentrating solar thermal (CST) station is integrated with a large-scale supercritical coal-fired power station, will be higher than that of a conventional supercritical coal-fired power station, but much less than that of a conventional CSP plant. The main aim of this study is to calculate and then compare the LCOE of a conventional supercritical coal-fired power station with that of such a station integrated with a linear Fresnel CST field. When the thermal energy generated in the receiver of a CST plant is converted into electrical energy by using the highly efficient regenerative Rankine cycle of a large-scale coal-fired power station, the total capital cost of the solar side of the integrated system will be reduced significantly, compared with the two stations operating independently of one another for common steam turbines, electrical generators and transformers, and transmission lines will be utilised for the integrated plants. The results obtained from the thermodynamic models indicate that if an additional heat exchanger integration option for a 90 MW (peak thermal) fuel-saver solar-augmentation scenario, where an annual average direct normal irradiation limit of 2 141 kWh/m2 is considered, one can expect to produce approximately 4,6 GWh more electricity to the national grid annually than with a normal coal-fired station. This increase in net electricity output is mainly due to the compounded lowered auxiliary power consumption during high solar-irradiation conditions. It is also found that the total annual thermal energy input required from burning pulverised coal is reduced by 110,5 GWh, when approximately 176,5 GWh of solar energy is injected into the coal-fired power station’s regenerative Rankine cycle for the duration of a year. Of the total thermal energy supplied by the solar field, approximately 54,6 GWh is eventually converted into electrical energy. Approximately 22 kT less coal will be required, which will result in 38,7 kT less CO2 emissions and about 7,6 kT less ash production. This electricity generated from the thermal energy supplied by the solar field will produce approximately R8,188m in additional revenue annually from the trade of renewable energy certificates, while the reduced coal consumption will result in an annual fuel saving of about R6,189m. By emitting less CO2 into the atmosphere, the annual carbon tax bill will be reduced by R1,856m, and by supplying additional energy to the national grid, an additional income of approximately R3,037m will be due to the power station. The annual operating and maintenance cost increase resulting from the additional 171 000 m2 solar field, will be in the region of R9,71m. The cost of generating 1 kWh with the solar-augmented coal-fired power plant will only be 0,34 cents more expensive at R0,714/kWh than it would be to generate the same energy with a normal supercritical coal-fired power station. If one considers that a typical conventional linear Fresnel CSP plant (without storage) has an LCOE of R3,08, the conclusion can be drawn that it is much more attractive to generate electricity from thermal power supplied by a solar field, by utilising the highly efficient large-scale components of a supercritical coal-fired power station, rather than to generate electricity from a conventional linear Fresnel CSP plant. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
5

Solar thermal augmentation of the regenerative feed-heaters in a supercritical Rankine cycle with a coalfired boiler / W.L. van Rooy

Van Rooy, Willem January 2015 (has links)
Conventional concentrating solar power (CSP) plants typically have a very high levelised cost of electricity (LCOE) compared with coal-fired power stations. To generate 1 kWh of electrical energy from a conventional linear Fresnel CSP plant without a storage application, costs the utility approximately R3,08 (Salvatore, 2014), whereas it costs R0,711 to generate the same amount of energy by means of a highly efficient supercritical coal-fired power station, taking carbon tax into consideration. This high LCOE associated with linear Fresnel CSP technology is primarily due to the massive capital investment required per kW installed to construct such a plant along with the relatively low-capacity factors, because of the uncontrollable solar irradiation. It is expected that the LCOE of a hybrid plant in which a concentrating solar thermal (CST) station is integrated with a large-scale supercritical coal-fired power station, will be higher than that of a conventional supercritical coal-fired power station, but much less than that of a conventional CSP plant. The main aim of this study is to calculate and then compare the LCOE of a conventional supercritical coal-fired power station with that of such a station integrated with a linear Fresnel CST field. When the thermal energy generated in the receiver of a CST plant is converted into electrical energy by using the highly efficient regenerative Rankine cycle of a large-scale coal-fired power station, the total capital cost of the solar side of the integrated system will be reduced significantly, compared with the two stations operating independently of one another for common steam turbines, electrical generators and transformers, and transmission lines will be utilised for the integrated plants. The results obtained from the thermodynamic models indicate that if an additional heat exchanger integration option for a 90 MW (peak thermal) fuel-saver solar-augmentation scenario, where an annual average direct normal irradiation limit of 2 141 kWh/m2 is considered, one can expect to produce approximately 4,6 GWh more electricity to the national grid annually than with a normal coal-fired station. This increase in net electricity output is mainly due to the compounded lowered auxiliary power consumption during high solar-irradiation conditions. It is also found that the total annual thermal energy input required from burning pulverised coal is reduced by 110,5 GWh, when approximately 176,5 GWh of solar energy is injected into the coal-fired power station’s regenerative Rankine cycle for the duration of a year. Of the total thermal energy supplied by the solar field, approximately 54,6 GWh is eventually converted into electrical energy. Approximately 22 kT less coal will be required, which will result in 38,7 kT less CO2 emissions and about 7,6 kT less ash production. This electricity generated from the thermal energy supplied by the solar field will produce approximately R8,188m in additional revenue annually from the trade of renewable energy certificates, while the reduced coal consumption will result in an annual fuel saving of about R6,189m. By emitting less CO2 into the atmosphere, the annual carbon tax bill will be reduced by R1,856m, and by supplying additional energy to the national grid, an additional income of approximately R3,037m will be due to the power station. The annual operating and maintenance cost increase resulting from the additional 171 000 m2 solar field, will be in the region of R9,71m. The cost of generating 1 kWh with the solar-augmented coal-fired power plant will only be 0,34 cents more expensive at R0,714/kWh than it would be to generate the same energy with a normal supercritical coal-fired power station. If one considers that a typical conventional linear Fresnel CSP plant (without storage) has an LCOE of R3,08, the conclusion can be drawn that it is much more attractive to generate electricity from thermal power supplied by a solar field, by utilising the highly efficient large-scale components of a supercritical coal-fired power station, rather than to generate electricity from a conventional linear Fresnel CSP plant. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015

Page generated in 0.048 seconds