• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica

Richter, Constanze 18 February 2016 (has links) (PDF)
A safe storage of radioactive waste in repositories is an important task to protect humans and the environment from radio- and chemotoxicity. Long-term safety assessments predict the behavior of potential environmental contaminants like the actinides plutonium, uranium, or neptunium, in the near and far field of repositories. For such safety assessments, it is necessary to know the migration behavior of the contaminants in the environment, which is mainly dependent on the aquatic speciation, the solubility product of relevant solid phases, and the retardation due to sorption on surrounding minerals. Thus, an investigation of sorption processes of contaminants onto different minerals as well as the derivation of mineral specific surface complexation model (SCM) parameters is of great importance. Feldspar and mica are widely distributed in nature. They occur as components of granite, which is considered as a potential host rock for a repository in Germany, and in numerous other rocks, and thus also in the far field of nearly all repositories. However, their sorption behavior with actinides has only been scarcely investigated until now. In order to better characterize these systems and subsequently to integrate these minerals into the long-term safety assessments, this work focuses on the investigation of the sorption behavior of U(VI), Np(V), and Nd(III) as analogue for An(III) onto the minerals orthoclase and muscovite, representing feldspars and mica, respectively. All investigations were performed under conditions relevant to the far field of a repository. In addition to the extensive characterization of the minerals, batch sorption experiments, spectroscopic investigations, and surface complexation modeling were performed to elucidate the uptake and speciation of actinides on the mineral surfaces. In addition, the influence of microorganisms naturally occurring on the mineral surfaces and the effect of Ca2+ on U(VI) uptake on the minerals was studied. The obtained sorption curves exhibit a similar characteristic for orthoclase and muscovite. As expected Nd(III) shows the highest amount of sorption followed by U(VI) and finally Np(V). With spectroscopic investigations of the aquatic U(VI) solution in presence of Ca2+, the Ca2UO2(CO3)3 complex could be identified. Furthermore, with spectroscopic methods the U(VI) surface species onto orthoclase could be characterized, of which a novel uranium-carbonate surface species was observed. Based on the results of batch experiments and spectroscopic methods new SCM parameters for the sorption of U(VI), Np(V), and Nd(III) onto orthoclase and for Np(V) and Nd(III) onto muscovite could be derived. SCM parameters for U(VI) sorption onto muscovite confirmed earlier investigations. The obtained SCM parameters increase the amount of data available for sorption processes onto feldspar and mica. With this the relevance of feldspars for the sorption of actinides and lanthanides could be shown. Thus, this work contributes to a better understanding of interactions of actinides and lanthanides, in particular U(VI), Np(V), and Nd(III), with mineral phases ubiquitous in the environment. This in turn adds confidence to long-term safety assessments essential for the protection of humans and the environment from the hazards of radioactive waste.
2

Strukturelle Untersuchung der Rückhaltung von Actiniden und ihrer Übergangsmetallhomologe an ausgewählte Alumosilikat-Phasen

Neumann, Julia 20 January 2022 (has links)
Die sichere Endlagerung hochradioaktiver Stoffe ist weltweit eine der großen Herausforderungen des 21. Jahrhunderts. Der abgebrannte Kernbrennstoff ist hoch-radiotoxisch und stellt somit eine Gefährdung für Mensch und Umwelt dar. Daher muss der radioaktive Abfall für bis zu einer Million Jahre von der Umwelt isoliert werden. International wird dafür die Endlagerung in tiefengeologischen Formationen favorisiert. Für ein solches Endlager für radioaktive Abfälle kommen in Deutschland Salz-, Ton- und Kristallinformationen in Frage, welche aufgrund der verschiedenen mineralogischen und geochemischen Bedingungen Radionuklide (RN) unterschiedlich stark immobilisieren. Wesentliche Prozesse sind dabei Ausfällung, Einbau in Festphasen und Sorption an Mineraloberflächen. Für eine belastbare Risikobewertung möglicher Endlagerstandorte sind geeignete Transportmodelle notwendig, welche auf umfangreiche thermodynamische Daten angewiesen sind. Hierfür sind insbesondere Studien zu Wechselwirkungen (WW) von RN mit Mineralphasen im Kristallingestein, d.h. Quarz, Feldspäten, Glimmern, nicht ausreichend verfügbar. Die minoren Actinide Am und Cm liegen in wässriger Lösung grundsätzlich im dreiwertigen Oxidationszustand vor. Außerdem werden unter den zu erwarteten reduzierenden Bedingungen in einem Endlager auch Np zu einem geringen und Pu zu einem nennenswerten Teil dreiwertig vorliegen. Daher beschäftigt sich der erste Teil der Arbeit mit den WW dreiwertiger Actiniden (An(III) = Am, Cm) mit Feldspäten. Der zweite Teil der Arbeit beschäftigt sich mit dem Einfluss von Elektrolyten auf die Rückhaltung von Actiniden an Mineraloberflächen. Dabei wurde zum einen der Einfluss des natürlich häufig auftretenden, anorganischen Liganden Sulfat auf die Sorption von An(III) an das Schichtsilikat (Glimmer) Muskovit untersucht, sowie in einem weiteren Beispiel der Einfluss der Elektrolytzusammensetzung auf die Sorption des Actinids Thorium an Muskovit untersucht. Th liegt in wässriger Lösung ausschließlich vierwertig vor und wird stark hydrolysiert, wodurch die Bildung polynuklearer Spezies begünstigt ist. Methodisch kommen in diesem Teil der Arbeit neben Oberflächenröntgenbeugung (SXRD) auch Alphaspektrometrie und Rasterkraftmikroskopie (AFM) zum Einsatz. Die Ergebnisse der Arbeit leisten einen signifikanten Beitrag zur realistischen Abschätzung der Mobilität drei- und vierwertiger Actiniden im Kristallingestein. Die Ergebnisse der Arbeit werden in Zukunft Simulationen des reaktiven Transports und somit die Auswahl eines geeigneten Standorts für ein Endlager für radioaktiven Abfall unterstützen.
3

Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica

Richter, Constanze 03 February 2016 (has links)
A safe storage of radioactive waste in repositories is an important task to protect humans and the environment from radio- and chemotoxicity. Long-term safety assessments predict the behavior of potential environmental contaminants like the actinides plutonium, uranium, or neptunium, in the near and far field of repositories. For such safety assessments, it is necessary to know the migration behavior of the contaminants in the environment, which is mainly dependent on the aquatic speciation, the solubility product of relevant solid phases, and the retardation due to sorption on surrounding minerals. Thus, an investigation of sorption processes of contaminants onto different minerals as well as the derivation of mineral specific surface complexation model (SCM) parameters is of great importance. Feldspar and mica are widely distributed in nature. They occur as components of granite, which is considered as a potential host rock for a repository in Germany, and in numerous other rocks, and thus also in the far field of nearly all repositories. However, their sorption behavior with actinides has only been scarcely investigated until now. In order to better characterize these systems and subsequently to integrate these minerals into the long-term safety assessments, this work focuses on the investigation of the sorption behavior of U(VI), Np(V), and Nd(III) as analogue for An(III) onto the minerals orthoclase and muscovite, representing feldspars and mica, respectively. All investigations were performed under conditions relevant to the far field of a repository. In addition to the extensive characterization of the minerals, batch sorption experiments, spectroscopic investigations, and surface complexation modeling were performed to elucidate the uptake and speciation of actinides on the mineral surfaces. In addition, the influence of microorganisms naturally occurring on the mineral surfaces and the effect of Ca2+ on U(VI) uptake on the minerals was studied. The obtained sorption curves exhibit a similar characteristic for orthoclase and muscovite. As expected Nd(III) shows the highest amount of sorption followed by U(VI) and finally Np(V). With spectroscopic investigations of the aquatic U(VI) solution in presence of Ca2+, the Ca2UO2(CO3)3 complex could be identified. Furthermore, with spectroscopic methods the U(VI) surface species onto orthoclase could be characterized, of which a novel uranium-carbonate surface species was observed. Based on the results of batch experiments and spectroscopic methods new SCM parameters for the sorption of U(VI), Np(V), and Nd(III) onto orthoclase and for Np(V) and Nd(III) onto muscovite could be derived. SCM parameters for U(VI) sorption onto muscovite confirmed earlier investigations. The obtained SCM parameters increase the amount of data available for sorption processes onto feldspar and mica. With this the relevance of feldspars for the sorption of actinides and lanthanides could be shown. Thus, this work contributes to a better understanding of interactions of actinides and lanthanides, in particular U(VI), Np(V), and Nd(III), with mineral phases ubiquitous in the environment. This in turn adds confidence to long-term safety assessments essential for the protection of humans and the environment from the hazards of radioactive waste.

Page generated in 0.0274 seconds