Spelling suggestions: "subject:"fermi"" "subject:"permi""
91 |
Superfluido de fermi aprisionado com Variação de Interação AtômicaSilva, Luis Ever Young [UNESP] 01 March 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:32Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-03-01Bitstream added on 2014-06-13T18:09:47Z : No. of bitstreams: 1
silva_ley_me_ift.pdf: 1027482 bytes, checksum: 33786f51e1c264a391590d7d9fd221a5 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho consideramos um gás diluído de átomos de Fermi a baixas temperaturas, com igual numero de átomos de espin para acima (↑) e espin para abaixo (↓) formando um conjunto de N pares de átomos fermiônicos prisioneiros pela ação de uma armadilha com diferentes simetrias, nos distintos limites: de interação fraca, no limite da unitariedade, e no chamado crossover BEC-unitariedade, empregando uma equação de funcional densidade cujas soluções descrevem adequadamente as características principais do superfluido, como são: a densidade de partículas, o tamanho médio, o potencial químico e a energia do sistema / In this work we considered a Fermi gas diluted at low temperatures, to equal number of atoms with spin up (↑) and spin down (↓) into a system of N fermion pairs prisoners for the action of a trap with different symmetries, in different limits: weak-coupling, unitarity limit, and the call crossover BEC-unitarity, using a densityfunctional equation whose solutions describe some characteristics of the superfluid appropriately, for example: density profiles of particles, radius, chemical potential and the energy of the system
|
92 |
Bilhares dependentes do tempo: um mecanismo para suprimir aceleração de FermiOliveira, Diego Fregolente Mendes de [UNESP] 08 July 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:31Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-07-08Bitstream added on 2014-06-13T20:53:31Z : No. of bitstreams: 1
oliveira_dfm_me_rcla.pdf: 1134230 bytes, checksum: 395fef9fc0f44e5228482e14a2c83df4 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O problema de bilhar teve origem em 1927 quando G.D. Birkhoff considerou um sistema para descrever o movimento de uma partícula livre dentro de uma região fechada por uma fronteira com a qual sofre colisões. Ao atingir a fronteira a partícula é refletida e viaja com velocidade constante até a próxima colisão. Nesse trabalho consideramos um modelo bidimensional conhecido na literatura como Bilhar Elíptico-ovóide. O raio da fronteira em coordenadas polares é dado por R(θ, p, e, є) = (1−e2)/[1+e cos(θ)]+є cos(pθ). Este modelo comporta-se como uma combinação dos bilhares elíptico e ovóide. Se considerarmos o caso em que a excentricidade e = 0 recuperamos os resultados para o bilhar ovóide, por outro lado, se a deformação na fronteira for nula, є = 0, os resultados para o bilhar elíptico são recuperados. Tal modelo consiste em considerar o movimento de uma partícula clássica de massa m movendo-se livremente no interior de uma região fechada. Ao colidir com a fronteira a trajetória da partícula muda de direção sem sofrer perdas de energia. Encontramos as expressões que descrevem a dinâmica do modelo nas variáveis posição angular e ângulo que a trajetória faz com a reta tangente à curva no ponto de colisão e discutimos nossos resultados numéricos. Observamos que o espaço de fases é do tipo misto, contendo ilhas do tipo Kolmogorov-Arnold-Moser (KAM) geralmente envoltas por um mar de caos, caracterizado por um expoente de Lyapunov positivo, e curvas invariantes do tipo spanning separando diferente regiões do espaço de fases. Entretanto, à medida que os parâmetros de controle são variados, a forma da fronteira se altera, podendo ocorrer que algumas regiões da fronteira passam a ter curvatura negativa. Uma implicação imediata deste comportamento é a destruição das curvas invariantes spanning no espaço de fases.... / The interest in understanding the dynamics of billiard problems becomes in earlies 1927 when Birkhoff introduced a system to describe the motion of a free particle inside a closed region with which the particle suffers elastic collisions. Inside the billiard, a point particle of mass m moves freely along a straight line until it hits the boundary. After the collision, it is assumed that the particle is specularly reflected. In our work we propose a special geometry for the boundary of a classical billiard, which we call as elliptical-oval boundary. The radius of the boundary in polar coordinates is given by R(θ, p, e, є) = (1−e2)/[1+e cos(θ)]+є cos(pθ). It is important to say that the shape of the boundary is controlled by three relevant control parameters, namely p=integer number, є = deformation of the boundary and e is the eccentricity. We obtain and discuss some numerical results considering different possibles combination of the control parameters. In our approach, we obtained a map that describe the particle’s dynamics and show that there are a critical value for the parameter є. We show that the phase space has different structures when є > єc and є < єc. Finaly, we obtained the positive Lyapunov Exponent reinforcing that the model has a chaotic behaviour. After studying the static version, we revisit the problem of a classical particle bouncing elastically inside a periodically time varying Oval billiard. The problem is described using a four dimensional mapping for the variables velocity of the particle; time immediately after a collision with the moving boundary; the angle that the trajectory of the particle does with the tangent at the position of the hit; and the angular position of the particle along the boundary. Our main goal is to understand and describe the behaviour of the particle’s average velocity (and hence its energy) as a function of the number of ...(Complete abstract click electronic access below)
|
93 |
Conseqüencias do arrasto viscoso no modelo Fermi-UlamTavares, Danila Fernandes [UNESP] 11 February 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:31Z (GMT). No. of bitstreams: 0
Previous issue date: 2008-02-11Bitstream added on 2014-06-13T19:47:47Z : No. of bitstreams: 1
tavares_df_me_rcla.pdf: 652000 bytes, checksum: 980f827df5cfeb7ee90e034a218f06ea (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Estudamos, neste trabalho, algumas propriedades dinâmicas do Modelo do Acelerador de Fermi, em três versões distintas: uma versão conservativa e duas versões dissipativas. A primeira versão dissipativa com amortecimento proporcional à velocidade da partícula e a segunda versão dissipativa com amortecimento proporcional ao quadrado da velocidade. Nas versões dissipativas, a força de dissipação é introduzida via arrasto viscoso e age ao longo de toda a trajetória da partícula. O modelo de Fermi é um modelo unidimensional que consiste de uma partícula clássica de massa m que move-se com velocidade constante e sofre colisões elásticas com duas paredes rígidas. Uma delas é fixa ao passo que a posição da outra é dependente do tempo. A descrição da dinâmica dos modelos é feita todas as vezes que a partícula colide com a parede móvel, de modo que o conhecimento dos valores da velocidade da partícula e do tempo no instante da colisões descrevem toda a dinâmica. O mapeamento que descreve a dinâmica é bidimensional, não linear e, para os casos dissipativos, obtidos via soluçãoo de equações diferenciais. Analisamos os modelos numericamente e apresentamos e discutimos nossos resultados. / Some dynamic properties of the one-dimensional Fermi Accelerator Model under the presence and absence of frictional force are studied. We have considered three different versions, namely: a conservative and two dissipative versions. The first dissipative version consists in considering the damping to be proportional to the particle’s velocity while the second one assumes the damping to be proportional to the square particle’s velocity. For the dissipative versions, we have introduced dissipation via a drag force, like a gas, that act during all trajectory of the particle. The Fermi accelerator model consists of a classical particle of mass m that is confined in and suffers elastic collisions with two walls. One of them is fixed while the other is time dependent. The description of the dynamics of either models is made all the times the particle bounces the moving wall. It is made via a two dimensional non linear mapping. For the dissipative cases the mapping is obtained via differential equations. We investigate both models analytically and numerically, present and discuss our results.
|
94 |
Quantum size oscillations and size effectsGarlow, John R. 05 1900 (has links)
The direct current size effect and the radio frequency size effect oscillation in the magnetoconductivity have been explained by a semiclassical theory which is based on the matching of the sample thickness and the classical spiral orbit of the electron about a magnetic field.
|
95 |
Low-energy electronic structure and fermi surface topology of the itinerant metamagnet Sr₃Ru₂O₇Ngankeu, Arlette Sohanfo 11 February 2015 (has links)
M.Sc. (Physics) / The way we live has been fundamentally changed by technological innovations based on optical, electronic and magnetic materials. Without the continuous increase of scienti c understanding on phenomena that occur in materials, together with the processing and synthesis of materials, these technological revolutions would be impossible. Thus, the search of new materials is still the key driving force for the continuous blooming of modern technology...
|
96 |
Some problems in the theory of many-body systemsLeggett, Anthony J. January 1964 (has links)
No description available.
|
97 |
Etude des propriétés électroniques de monocristaux massifs et monocouches de dichalcogénures de tungstène par magnéto-spectroscopie / Probing the electronic properties ofn bulk and monolayer crystals of tungsten dichalcogénures de tungstène par magnéto-spectroscopieMitioglu, Anatolie 06 July 2015 (has links)
Dans cette thèse, nous avons étudié les propriétés électroniques de WS2 et WSe2 par µ-PL, spectroscopie Raman, absorption optique inter bande et µ-PL résolue en temps combinées avec des champs magnétiques intenses. Nous montrons que l'émission de l'exciton par rapport au trion dans les monocouches de WS2 et WSe2 est fonction de la puissance du laser utilisé pour l'excitation de la µ-PL. De plus, nous montrons que l'intensité de l'émission du trion peut être contrôlée indépendamment en utilisant une énergie d'excitation plus basse que la bande interdite. Il s'agit d'une preuve du contrôle de la densité de porteurs dans ces systèmes 2D. Nous avons également étudié la diffusion Raman en résonance dans une monocouche de WS2. Nous observons un mode acoustique (2LA), seulement 4cm-1 en-dessous du mode E12g. Nous montrons qu'en fonction du rapport des intensité et la largeur de ligne de chacun de ces deux pics, toute analyse qui néglige la présence de la mode 2LA peut conduire à une estimation incorrecte du nombre de couche. Les propriétés électroniques de chaque vallée d'une monocouche de WSe2 ont été sondées par µ-PL via l'étude de l'émission et de la polarisation des excitons neutres et chargés. Nous montrons que le temps de diffusion de l'exciton entre les vallées de K+ et K- est de l'ordre de plusieurs ps. Enfin, grâce à la magnéto-spectroscopie, nous mettons en évidence différents types de porteurs de charges entre la monocouche et le cristal massif. Nous montrons que dans la monocouche, les porteurs de charge se comportent comme des fermions massifs Dirac, tandis que dans le monocristal de WSe2 nous observons un comportement excitonique, décrit par le modèle de l'atome d'hydrogène / In this thesis, we have studied tungsten dichalcogenides (WS2 and WSe2) by means of steady-state µ-photoluminescence (µ-PL) and Raman spectroscopy, optical interband absorption and time-resolved µ-PL techniques in the visible spectral range combined with high magnetic fields. We demonstrate that the ratio between the trion and exciton emission can be tuned by varying the power of the laser used for excitation of the µ-PL in ungated monolayer WS2 and WSe2 samples. Moreover, the intensity of the trion emission can be independently tuned using additional sub band gap illumination. This is a direct evidence that we can control the density of carriers in a 2D system. We have investigated the resonant Raman scattering in a WS2 monolayer. We observe a second order longitudinal acoustic mode (2LA) at only 4cm-1 below the first order E12g mode. We demonstrate, that depending on the intensity ratio and the respective line widths of these two peaks, any analysis which neglects the presence of the 2LA mode can lead to a potentially incorrect assignment for the number of layers. The valley dynamics in monolayer WSe2 has been probed by monitoring the emission and polarization dynamics of neutral and charged excitons in µ-PL. We demonstrate that the exciton inter valley scattering between the K+ and K- valleys is in the order of several picoseconds. Finally, using magneto-spectroscopy studies, we reveal the very different nature of carriers in monolayer and bulk dichalcogenides. We demonstrate that in monolayer WSe2, the carriers behave as massive Dirac fermions, while in bulk WSe2 we observe a distinctly excitonic behavior which is best described within the hydrogen model
|
98 |
Mixtures of superfluids / Mélanges de superfluidesDelehaye, Marion 08 April 2016 (has links)
Les atomes froids sont des outils uniques pour sonder la physique de la matière quantique. Hautement contrôlables, les gaz de Bose et de Fermi ultrafroids sont des systèmes idéaux pour la simulation quantique et pour explorer des manifestations spectaculaires des effets quantiques, comme la superfluidité. Avec des gaz froids de 6Li et de 7Li, nous avons produit le premier mélange de superfluides bosonique-fermionique, et étudié ses propriétés en initiant un contre-flot entre les nuages de Bose et de Fermi (mode dipolaire). La vitesse critique de superfluidité a été mesurée dans le crossover BEC-BCS et elle est trouvée proche de la vitesse du son dans le gaz de Fermi. Nous comparons nos mesures avec des prédictions théoriques récentes. En élevant la température du mélange, nous avons aussi observé une synchronisation inattendue entre les mouvements des deux nuages, interprétée comme un effet Zénon induit par la dissipation. Finalement, ce mélange de bosons et de fermions offre la possibilité unique de créer un piège homogène pour le gaz de Fermi. En ajustant finement les interactions, nous proposons d’utiliser la répulsion entre les bosons et les fermions pour compenser la courbure du piège harmonique pour les fermions. Pour des fermions présentant une polarisation de spin, nous prédisons théoriquement l’existence d’un superfluide avec une structure en “coquille” et fournissons les premières indications expérimentales de l’observation de ce superfluide topologiquement original. / Ultracold atoms are unique tools to probe the physics of quantum matter. Indeed, the high degree of tunability of ultracold Bose and Fermi gases makes them ideal systems for quantum simulation and for exploring macroscopic manifestations of quantum effects, such as superfluidity. In this work, we have realized the first Bose-Fermi superfluid mixture, with ultracold gases of 6Li and 7Li. The properties of the mixture are investigated by initiating a Bose-Fermi counterflow through their dipole modes. The superfluid critical velocity is measured in the BEC-BCS crossover, and is found close to the sound velocity of the Fermi gas near unitarity. We compare our findings to recent theoretical predictions. Raising the temperature of the mixture, we observe an unexpected synchronization of the motion of the two clouds, interpreted with a Zeno-like model induced by dissipation. Finally, this Bose-Fermi mixture offers the unique possibility to create a homogeneoustrap for the Fermi gas. By a fine tuning of the interactions, we propose to use the Bose-Fermi repulsion to compensate the curvature of the harmonic trap for fermions. For a spin-polarized Fermi gas in such a trap, we theoretically predict the existence of a superfluid with a shell structure and we provide first experimental evidence for this topologically new superfluid.
|
99 |
Fermi Liquid Properties of Dirac Materials:Gochan, Matthew January 2020 (has links)
Thesis advisor: Kevin S. Bedell / One of the many achievements of renowned physicist L.D. Landau was the formulation of Fermi Liquid Theory (FLT). Originally debuted in the 1950s, FLT has seen abundant success in understanding degenerate Fermi systems and is still used today when trying to understand the physics of a new interacting Fermi system. Of its many advantages, FLT excels in explaining why interacting Fermi systems behave like their non-interacting counterparts, and understanding transport phenomena without cumbersome and confusing mathematics. In this work, FLT is applied to systems whose low energy excitations obey the massless Dirac equation; i.e. the energy dispersion is linear in momentum, ε α ρ, as opposed to the normal quadratic, ε α ρ². Such behavior is seen in numerous, seemingly unrelated, materials including graphene, high T[subscript]c superconductors, Weyl semimetals, etc. While each of these materials possesses its own unique properties, it is their low energy behavior that provides the justification for their grouping into one family of materials called Dirac materials (DM). As will be shown, the linear spectrum and massless behavior leads to profound differences from the normal Fermi liquid behavior in both equilibrium and transport phenomena. For example, with mass having no meaning, we see the usual effective mass relation from FLT being replaced by an effective velocity ratio. Additionally, as FLT in d=2 has been poorly studied in the past, and since the most famous DM in graphene is a d=2 system, a thorough analysis of FLT in d=2 is presented. This reduced dimensionality leads to substantial differences including undamped collective modes and altered quasiparticle lifetime. In chapter 3, we apply the Virial theorem to DM and obtain an expression for the total average ground state energy $E=\frac{B}{r_s}$ where $B$ is a constant independent of density and $r_s$ is a dimensionless parameter related to the density of the system: the interparticle spacing $r$ is related to $r_s$ through $r=ar_s$ where $a$ is a characterstic length of the system (for example, in graphene, $a=1.42$ \AA). The expression derived for $E$ is unusual in that it's typically impossible to obtain a closed form for the energy with all interactions included. Additionally, the result allows for easy calculation of various thermodynamic quantities such as the compressibility and chemical potential. From there, we use the Fermi liquid results from the previous chapter and obtain an expression for $B$ in terms of constants and Fermi liquid parameters $F_0^s$ and $F_1^s$. When combined with experimental results for the compressibility, we find that the Fermi liquid parameters are density independent implying a unitary like behavior for DM. In chapter 4, we discuss the alleged universal KSS lower bound in DM. The bound, $\frac{\eta}{s}\geq\frac{\hbar}{4\pi k_B}$, was derived from high energy/string theory considerations and was conjectured to be obeyed by all quantum liquids regardless of density. The bound provides information on the interactions in the quantum liquid being studied and equality indicates a nearly perfect quantum fluid. Since its birth, the bound has been highly studied in various systems, mathematically broken, and poorly experimented on due to the difficult nature of measuring viscosity. First, we provide the first physical example of violation by showing $\frac{\eta}{s}\rightarrow 0$ as $T\rightarrow T_c$ in a unitary Fermi gas. Next, we determine the bound in DM in d=2,3 and show unusual behavior that isn't seen when the bound is calculated for normal Fermi systems. Finally we conclude in chapter 5 and discuss the outlook and other avenues to explore in DM. Specifically, it must be pointed out that the physics of what happens near charge neutrality in DM is still poorly understood. Our work in understanding the Fermi liquid state in DM is necessary in understanding DM as a whole. Such a task is crucial when we consider the potential in DM, experimentally, technologically, and purely for our understanding. / Thesis (PhD) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
|
100 |
Development of a Verilog-A Compatible Model for the Fermi Velocity in Graphene Field Effect Transistor SimulationsMappes, John 23 May 2022 (has links)
No description available.
|
Page generated in 0.0261 seconds