1 |
Modulation instability and Fermi-Pasta-Ulam-Tsingou recurrences in optical fibres / Instabilité de modulation et récurrences de Fermi-Pasta-Ulam-Tsingou dans les fibres optiquesNaveau, Corentin 11 October 2019 (has links)
Ce travail porte sur l’étude du processus d’instabilité de modulation dans les fibres optiques et notamment son étape nonlinéraire. Ce processus peut induire une dynamique complexe de couplage entre une onde de pompe et des bandes latérales avec notamment un, voire de multiples, retour à l’état initial s’il est amorcé activement. Ce phénomène est connu sous le nom de récurrences de Fermi-Pasta-Ulam-Tsingou. Dans cette thèse, nous décrivons la mise en place d’un montage expérimental se basant sur la détection hétérodyne d’un signal rétrodiffusé et une compensation active des pertes. Il permet une caractérisation distribuée rapide et non-invasive tout le long d’une fibre de l’amplitude et la phase des principales composantes spectrales d’une impulsion. En outre, nous détaillons une méthode de post-traitement qui nous permet de retrouver l’évolution du champ complexe dans le domaine temporel. Mettant en oeuvre ces outils, nous avons rapporté l’observation de deux récurrences de Fermi-Padta-Ulam-Tsingou et leur brisure de symétrie, à la fois dans les domaines fréquentiel et temporel. Suite à cela, nous avons quantitativement examiné l’influence des conditions initiales des trois ondes envoyées dans la fibre sur la position des récurrences, en comparaison avec de récentes prédictions théoriques. Finalement, nous avons étudié la dynamique de structures nonlinéraies d’ordre supérieur, à savoir les breathers du deuxième ordre. / This work deals with the investigation of the modulation instability process in optical fibres and in particular its nonlinear stage. This process can induce a complex coupling dynamic between the pump and sidebands waves, with a single or multiple returns to the initial state if it is seeded. This phenomenon is referred as Fermi-Pasta-Ulam-Tsingou recurrences. In this thesis, we describe the implementation of a novel experimental technique based on heterodyne optical time-domain reflectometry and active compensation of losses. It allows fast and non-invasive distributed characterisation along a fibre of the amplitude and phase of the main frequency components of a pulse. Furthermore, we detail a simple post-processing method which enable us to retrieve the complex field evolution in the time domain. Using these tools, we reported the observation of two Fermi-Pasta-Ulam-Tsingou recurrences and their symmetry-breaking nature, both in the frequency and time domain. Then, we quantitatively studied the influence of the initial three-wave input conditions on the recurrence positions, in regards with recent theoretical predictions. Finally, we investigated the dynamics of higher-order nonlinear structures, namely second-order breathers.
|
2 |
Kink-like solutions for the FPUT lattice and the mKdV as a modulation equationNorton, Trevor 24 July 2024 (has links)
The Fermi-Pasta-Ulam-Tsingou (FPUT) lattice became of great mathematical interest when it was observed that it exhibited a near-recurrence of its initial condition, despite it being a nonlinear system. This behavior was explained by showing that the Korteweg-de Vries (KdV) equation serves as a continuum limit for the FPUT and has soliton solutions. Much work has been done into analyzing the solitary wave solutions of the FPUT and the relationship between the lattice and its continuum limit. For certain potentials the modified KdV (mKdV) instead serves as the continuum limit for the FPUT. However, there has been little research done to examine how the defocusing mKdV can be used a modulation equation for the FPUT or how the kink solutions of the mKdV relate to solutions of the FPUT. This thesis first addresses the existence of kink-like solutions of the FPUT and shows that their profiles can be approximated by the profiles of the kink solutions of the mKdV. Next, it is shown that the defocusing mKdV can be used more widely as a modulation equation for small-amplitude, long-wavelength solutions of the FPUT lattice. Finally, the issue of stability of the kink-like solutions is discussed, and some results toward linear stability are given.
|
Page generated in 0.0629 seconds