• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polarization And Switching Dynamics Study Of Ferroelectric Hafnium Zirconium Oxide For FeRAM And FeFET Applications

Xiao Lyu (16329144) 19 June 2023 (has links)
<p>As a scalable and CMOS compatible novel ferroelectric material, the ferroelectric HZO thin film has been the promising material for various applications and continues to attract the attention of researchers. Achieving strong ferroelectricity and fast switching speed in ultrathin FE HZO film are crucial challenges for its applications towards scaled devices.</p> <p>The ferroelectric and anti-ferroelectric properties of HZO are investigated systematically down to 3 nm. The ferroelectric polarization, switching speed and the impact of ALD tungsten nitride electrodes are studied. Record high Pr on FE HZO and record high PS on AFE HZO are achieved with WN electrodes, especially in ultrathin sub-10 nm regime. The polarization switching speed of FE and AFE HZO, associated with C-V frequency dispersion, are also qualitatively studied. On the other side of the scaling limit, ferroelectric/dielectric stack superlattice structure is found to enhance the ferroelectricity in thick films which would have severely degraded.</p> <p>Ultrafast direct measurement on the transient ferroelectric polarization switching is used to study the switching speed in FE HZO with a crossbar MFM structure. Sub-nanosecond characteristic switching time of 925 ps was achieved, supported by the nucleation limited switching model. The impact of electric field, film thickness and device area on the polarization switching speed is systematically studied. The ferroelectric switching speed is significantly improved compared to previous reports and more importantly is approaching GHz regime, suggesting FE HZO to be competitive in high-speed non-volatile memory technology. Record fast polarization switch speed of 360 ps is obtained in sub-μm crossbar array FE HZO MFM devices. It also unveils that domain wall propagation speed in HZO is the limiting factor for switch speed and more aggressively scaled devices will offer much faster switch speed.</p> <p>The first experimental determination of nucleation time and domain wall (DW) velocity by studying switching dynamics of ferroelectric (FE) hafnium zirconium oxide (HZO) was performed. Experimental data and simulation results were used to quantitatively study the switching dynamics. The switching speed is degraded in high aspect ratio devices due to the longer DW propagation time or with dielectric interfacial layer due to the required additional tunneling and trapping time by the leakage current assist switch mechanism.</p>
2

Embedding hafnium oxide based FeFETs in the memory landscape

Slesazeck, Stefan, Schroeder, Uwe, Mikolajick, Thomas 09 December 2021 (has links)
During the last decade ferroelectrics based on doped hafnium oxide emerged as promising candidates for realization of ultra-low-power non-volatile memories. Two spontaneous polarization states occurring in the material that can be altered by applying electrical fields rather than forcing a current through and the materials compatibility to CMOS processing are the main benefits setting the concept apart from other emerging memories. 1T1C ferroelectric random access memories (FeRAM) as well as 1T FeFET concepts are under investigation. In this article the application of hafnium based ferroelectric memories in different flavours and their ranking in the memory landscape are discussed.
3

Analysis of Performance Instabilities of Hafnia-Based Ferroelectrics Using Modulus Spectroscopy and Thermally Stimulated Depolarization Currents

Fengler, Franz P. G., Nigon, Robin, Muralt, Paul, Grimley, Everett D., Sang, Xiahan, Sessi, Violetta, Hentschel, Rico, LeBeau, James M., Mikolajick, Thomas, Schroeder, Uwe 24 August 2022 (has links)
The discovery of the ferroelectric orthorhombic phase in doped hafnia films has sparked immense research efforts. Presently, a major obstacle for hafnia's use in high-endurance memory applications like nonvolatile random-access memories is its unstable ferroelectric response during field cycling. Different mechanisms are proposed to explain this instability including field-induced phase change, electron trapping, and oxygen vacancy diffusion. However, none of these is able to fully explain the complete behavior and interdependencies of these phenomena. Up to now, no complete root cause for fatigue, wake-up, and imprint effects is presented. In this study, the first evidence for the presence of singly and doubly positively charged oxygen vacancies in hafnia–zirconia films using thermally stimulated currents and impedance spectroscopy is presented. Moreover, it is shown that interaction of these defects with electrons at the interfaces to the electrodes may cause the observed instability of the ferroelectric performance.

Page generated in 0.062 seconds