• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reduction of tetrachloroethylene and trichloroethylene by magnetite revisted

Culpepper, Johnathan D 01 August 2017 (has links)
For this study, we revisited whether the common iron Fe mineral, magnetite Fe3O4 (s), can reduce tetrachloroethylene (PCE) and trichloroethylene (TCE) as discrepancies exist in the literature regarding rates and extent of reduction. We measured PCE and TCE reduction in batch reactors as a function of magnetite stoichiometry (x = Fe2+/Fe3+ ratio), solids loading, pH, and Fe(II) concentration. Our results show that magnetite reacts only slowly with TCE (t1/2 = 7.6 years) and is not reactive with PCE over 150 days. The addition of aqueous Fe(II) to magnetite suspensions, however, results in slow, but measurable PCE and TCE reduction under some conditions. The solubility of ferrous hydroxide, Fe(OH)2(s), appears to play an important role in whether magnetite reduces PCE and TCE. In addition, we found that Fe(OH)2(s) reduces PCE and TCE at high Fe(II) concentrations as well. At certain conditions degradation of the PCE and TCE is enhanced by an unexplored synergistic response from magnetite and ferrous hydroxide iron phases. Our work suggests that measuring dissolved Fe(II) concentration and pH may be used as indicators to predict whether PCE and TCE will be abiotically degraded by groundwater aquifer solids containing magnetite.

Page generated in 0.0604 seconds