• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The origin and early development of the intrinsic innervation in the foetal mouse lung /

Tollet, Cecilia Jenny. January 2003 (has links)
Thesis (Ph.D.)--University of Western Australia, 2004.
2

The origin and early development of the intrinsic innervation in the foetal mouse lung

Tollet, Cecilia Jenny January 2003 (has links)
In this study, the origin and development of the intrinsic innervation in the foetal mouse lung is described and experimental evidence is provided to support the involvement of glial cell line-derived neurotrophic factor (GDNF) in the guidance of nerves and neuronal precursors in the developing lung. Antibodies were used to stain for neuronal precursors, neurones, nerve fibres, primordial epithelium and smooth muscle. These structures were revealed in whole mounts of foetal mouse lungs by immunofluorescence and confocal microscopy, and their spatial and temporal distribution was mapped from the onset of lung development and through the pseudoglandular period. The results showed that neuronal precursors, positive for neural crest cell markers, were present in the vagal tract of the foregut at embryonic day 10 (E10), the time of the evagination of the lung buds. These neural crest-derived cells (NCC) migrated into the lung at E11, along nerve processes directed from the vagus to the smooth musclecovered trachea and emerging lobar bronchi. During E11-E14, a network of nerves and ganglia became established along the dorsal trachea, and large ganglia formed a plexus at the ventral hilum. Nerve trunks issued from these ganglia, travelled along the smooth muscle-covered bronchi, providing a pathway for migrating NCC. To investigate the role of GDNF in the innervation of the lung, an in vitro model of left lung lobes was established. Lung growth and tubule branching was comparable to that in vivo, and neural tissue and smooth muscle continued to grow and thrive. A significant increase in nerve growth occurred when explants were cultured with GDNF compared to controls. Nerves extended, and NCC migrated towards GDNF-impregnated beads suggesting that GDNF may be the molecule guiding nerve fibres and NCC in the lung. The migrating NCC were negative for GDNF-family receptor α1 (GFRα1) during their migration into the lung while the nerves were positive. Since GDNF needs to be associated with its binding receptor, GFRα1, for cellular signalling, GDNF may induce the migration of the NCC if they migrate along the GFRα1-positive nerve fibres. It is concluded that neural tissue and smooth muscle become integral components of the lung shortly after the onset of lung development. The results show that the migration of neural crest-derived cells into the lung and the establishment of the innervation requires coordinated cross-talk between NCC, nerves and smooth muscle throughout development.

Page generated in 0.0795 seconds