• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carrier-envelope phase stabilization of grating-based chirped-pulse amplifiers

Moon, Eric Wayne January 1900 (has links)
Doctor of Philosophy / Department of Physics / Zenghu Chang / In this research, the carrier-envelope phase (CE phase) evolution of the pulse train from a Kerr-lens mode-locked chirped-mirror dispersion compensated Ti:Sapphire laser oscillator was stabilized. The offset frequency corresponding to the rate of change of the CE phase was obtained by spectrally broadening the oscillator pulses in a photonic crystal fiber and interfering the f and 2f components. An offset frequency linewidth of 100 mHz was obtained and could be locked over several hours. The effect of path length drift in the interferometer used for CE phase stabilization of the laser oscillator was investigated. By stabilizing the path length drift, the interferometer noise was reduced by several orders of magnitude. The CE phase drift through a grating-based chirped-pulse multi-pass amplifier was investigated. Varying the grating separation by 1μm in the stretcher was found to cause a shift of 3.7 +/- 1.2 rad of the CE phase. The CE phase could be stabilized to within 160 mrad rms error by feedback controlling the grating separation. By locking the path length in the f-to-2f interferometer used to stabilize the CE phase of the oscillator pulses, the fast (>3 Hz) CE phase drift of the amplified laser pulses was reduced from 79 to 48 mrad. It was also found that the CE phase could be shifted and set to any value within a 2π range by changing the grating separation. Also, the CE phase could be continuously modulated within a 2π range while maintaining a relative phase error of 171 mrad. The CE phase shift of a grating-based compressor was found to be stabilized to 230 mrad rms. The effect of laser power fluctuation on the CE phase measurement was also investigated. It was found that a 1% fluctuation of the laser energy caused a 160 mrad error in the CE phase measurement. A two-step model is proposed to explain the phase-energy coupling in the CE phase measurement. The model explains the experimentally observed dependence of the group delay between the f and 2f pulses on the laser energy. Few-cycle pulses were CE phase stabilized to 134 mrad rms and were used to perform above-threshold ionization and high harmonic generation.
2

Generace fázově stabilních ultrakrátkých pulzů ve střední infračervené oblasti / Generation of carrier-envelope-stable few-cycle pulses in the mid-infrared spectral region

Peterka, Pavel January 2020 (has links)
In this thesis we present the realization of a source of 1.5-cycle carrier-envelope phase stable laser pulses in the mid-infrared spectral region. We used ytterbium laser system generating 1 µm pulses as a pump of setup, where the beam is split into several parts and interact in nonlinear optical media. 2 µJ pulses with duration 18 fs at 50 kHz repe- tition rate are produced. By spectral broadening in crystal GGG, 9,9 fs pulses can be achieved. The mid-IR pulses was characterized by third harmonics generation frequency resolved optical gating in the interferometric configuration. Fourier filtering of the mea- sured interferogram allows for the complete reconstruction of amplitude and phase of the ultrashort pulses generated by our setup. The pulses will in future serve for experimental investigation of ultrafast strong-field phenomena in solids. 1
3

Ultrarychlé vysoce nelineární procesy v diamantu / Ultrafast highly nonlinear processes in diamond

Zukerstein, Martin January 2020 (has links)
Intense few-cycle laser pulses can significantly affect the properties of transparent solids during the interaction. These processes take place on femtosecond time scales and they can be studied using ultrafast spectroscopic methods. This dissertation deals with highly nonlinear processes in diamond. In the interaction with a crystalline diamond, we observed a strong nonlinear broadening of the spectrum due to self-phase modulation effect, which allowed us to create a simple technique for compression of pulses from laser oscillator. At the same time, strongly nonlinear five-photon absorption was observed, in which we found a significant anisotropy and dependence on the polarization state. With two-beam pump and probe experiments we present a study of anharmonic phenomena in the dynamics of coherent phonons in diamond, additionally we created a new detection technique of lattice vibrations using multiphoton absorption. Finally, the high time resolution of the experiments revealed that the sub-picosecond electron dynamics strongly depends on the composition and morphology of the polycrystalline diamond thin films. The experimental results of this work provide comprehensive research into the interaction of diamond with few-cycle laser pulses and the development of new spectroscopic methods.
4

Laser-driven molecular dynamics: an exact factorization perspective

Fiedlschuster, Tobias 19 January 2019 (has links)
We utilize the exact factorization of the electron-nuclear wave function [Abedi et al., PRL 105 123002 (2010)] to illuminate several aspects of laser-driven molecular dynamics in intense femtosecond laser pulses. Above factorization allows for a splitting of the full molecular wave function and leads to a time-dependent Schrödinger equation for the nuclear subsystem alone which is exact in the sense that the absolute square of the corresponding, purely nuclear, wave function yields the exact nuclear N-body density of the full electron-nuclear system. As one remarkable feature, this factorization provides the exact classical force, the force which contains the highest amount of electron-nuclear correlations that can be retained in the quantum-classical limit of the electron-nuclear system. We re-evaluate the classical limit of the nuclear Schrödinger equation from the perspective of the exact factorization, and address the long-standing question of the validity of the popular quantum-classical surface hopping approach in laserdriven cases. In particular, our access to the exact classical force allows for an elaborate evaluation of the various and completely different potential energy surfaces frequently applied in surface hopping calculations. The highlight of this work consists in a generalization of the exact factorization and its application to the laser-driven molecular wave function in the Floquet picture, where the molecule and the laser form an united quantum system exhibiting its own Hilbert space. This particular factorization enables us to establish an analytic connection between the exact nuclear force and Floquet potential energy surfaces. Complementing above topics, we combine different well-known and proven methods to give a systematic study of molecular dissociation mechanisms for the complicated electric fields provided by modern attosecond laser technology.:Contents Introduction 1 The exact factorization of time-dependent wave functions 1.1 Concern and state of the art 1.2 The exact factorization of the electron-nuclear wave function 1.3 The generalized exact factorization 1.4 The exact factorization for coupled harmonic oscillators 1.5 The exact factorization for a single particle with spin 1.6 The exact factorization of the laser-driven electron-nuclear wave function in the Floquet picture 1.7 Summary and conclusion 2 Quantum-classical molecular dynamics from an exact factorization perspective 2.1 Concern and state of the art 2.2 The exact nuclear TDSE 2.3 The Wigner-Moyal equation for the nuclear TDSE and its classical limit 2.4 The Bohmian formulation of the nuclear TDSE and its classical limit 2.5 Comparative calculations 2.5.1 Scenario 1: stationary states 2.5.2 Scenario 2: laser-driven dynamics 2.6 Summary and conclusion 3 Surface hopping in laser-driven molecular dynamics 3.1 Concern and state of the art 3.2 Surface hopping 3.3 Quantum-classical dynamics on the EPES 3.4 The benchmark model and its potential energy surfaces 3.5 Surface hopping in laser-driven molecular dynamics 3.6 Summary and conclusion 4 Beyond the limit of the Floquet picture: molecular dissociation in few-cycle laser pulses 4.1 Concern and state of the art 4.2 Theoretical few-cycle pulses 4.3 Calculation of dissociation probabilities 4.4 Dissociation in few-cycle pulses 4.4.1 Dissociation in half-cycle pulses 4.4.2 Dissociation in few-cycle pulses 4.5 Dissociation in realistic attosecond pulses 4.6 Summary and conclusion Outlook Appendices A List of abbreviations B Numerical details C Calculating electronic observables within quantum-classical molecular dynamics D Ionization in few-cycle pulses E Modeling an optical attosecond pulse Bibliography
5

Développement d’un accélérateur laser-plasma à haut taux de répétition pour des applications à la diffraction ultra-rapide d’électrons / Interaction of few-cycle laser pulses with plasmas : application to electron acceleration and generation of attosecond electron bunches

Beaurepaire, Benoit 16 September 2016 (has links)
La microscopie électronique et la diffraction d’électrons ont permis de comprendre l’organisation des atomes au sein de la matière. En utilisant une source courte temporellement, il devient possible de mesurer les déplacements atomiques ou les modifications de la distribution électronique dans des matériaux. A ce jour, les sources ultra-brèves pour les expériences de diffraction d’électrons ne permettent pas d’atteindre une résolution temporelle inférieure à la centaine de femtosecondes (fs). Les accélérateurs laser-plasma sont de bons candidats pour atteindre une résolution temporelle de l’ordre de la femtoseconde. De plus, ces accélérateurs peuvent fonctionner à haut taux de répétition, permettant d’accumuler un grand nombre de données.Dans cette thèse, un accélérateur laser-plasma fonctionnant au kHz a été développé et construit. Cette source accélère des électrons à une énergie de 100 keV environ à partir d’impulsions laser d’énergie 3 mJ et de durée 25 fs. La physique de l’accélération a été étudiée, démontrant entre autres l’effet du front d’onde laser sur la distribution transverse des électrons.Les premières expériences de diffraction avec ce type de sources ont été réalisées. Une expérience de preuve de principe a montré que la qualité de la source est suffisante pour obtenir de belles images de diffraction sur des feuilles d’or et de silicium. Dans un second temps, la dynamique structurelle d’un échantillon de Silicium a été étudiée avec une résolution temporelle de quelques picosecondes, démontrant le potentiel de ce type de sources.Pour augmenter la résolution temporelle à sub-10 fs, il est nécessaire d’accélérer les électrons à des énergies relativistes de quelques MeV. Une étude numérique a montré que l’on peut accélérer des paquets d’électrons ultra-courts grâce à des impulsions laser de 5 mJ et 5 fs. Il serait alors possible d’atteindre une résolution temporelle de l’ordre de la femtoseconde. Finalement, une expérience de post-compression des impulsions laser due à l’ionisation d’un gaz a été réalisée. La durée du laser a pu être réduite d’un facteur deux, et l’homogénéité de ce processus a été étudiée expérimentalement et numériquement. / Electronic microscopy and electron diffraction allowed the understanding of the organization of atoms in matter. Using a temporally short source, one can measure atomic displacements or modifications of the electronic distribution in matter. To date, the best temporal resolution for time resolved diffraction experiments is of the order of a hundred femtoseconds (fs). Laser-plasma accelerators are good candidates to reach the femtosecond temporal resolution in electron diffraction experiments. Moreover, these accelerators can operate at a high repetition rate, allowing the accumulation of a large amount of data.In this thesis, a laser-plasma accelerator operating at the kHz repetition rate was developed and built. This source generate electron bunches at 100 keV from 3 mJ and 25 fs laser pulses. The physics of the acceleration has been studied, and the effect of the laser wavefront on the electron transverse distribution has been demonstrated.The first electron diffraction experiments with such a source have been realized. An experiment, which was a proof of concept, showed that the quality of the source permits to record nice diffraction patterns on gold and silicium foils. In a second experiment, the structural dynamics of a silicium sample has been studied with a temporal resolution of the order of a few picoseconds.The electron bunches must be accelerated to relativistic energies, at a few MeV, to reach a sub-10 fs temporal resolution. A numerical study showed that ultra-short electron bunches can be accelerated using 5 fs and 5 mJ laser pulses. A temporal resolution of the order of the femtosecond could be reached using such bunches for electron diffraction experiments. Finally, an experiment of the ionization-induced compression of the laser pulses has been realized. The pulse duration was shorten by a factor of 2, and the homogeneity of the process has been studied experimentally and numerically.
6

High-repetition-rate relativistic electron acceleration in plasma wakefields driven by few-cycle laser pulses / L’accélération des électrons relativistes à haute cadence dans les sillages plasma générés par des impulsions laser de quelques cycles optiques

Gustas, Dominykas 14 December 2018 (has links)
Le progrès continu de la technologie laser a récemment permis l’avancement spectaculaire d’accélérateurs de particules par onde de sillage. Cette technique permet la génération de champs électriques très forts, pouvant dépasser de trois ordres de grandeurs ceux présents dans les accélérateurs conventionnels. L’accélération résultante a lieu sur une distance très courte, par conséquent les effets de la charge d’espace et de la dispersion de vitesse sont considérablement réduits. Les paquets de particules ainsi générés peuvent alors atteindre des durées de l’ordre de la femtoseconde, qui en fait un outil prometteur pour la réalisation d’expériences de diffraction ultra-rapide avec une résolution inégalée de l’ordre de quelques femtosecondes. La génération de tels paquets d’électrons avec des lasers de 1 J et d’une durée de 30 fs est à présent bien établie. Ces paramètres permettent de produire des faisceaux d’électrons de quelques centaines de MeV, et sont donc inadaptés aux expériences de diffraction. De plus, le taux de répétition de ces lasers de haute puissance est limité à quelques Hz, ce qui est insuffisant pour des expériences exigeant une bonne statistique de mesure. Notre groupe a utilisé un laser de pointe développé au laboratoire par le groupe PCO générant des impulsions de quelques millijoules, d’une durée de 3.4 fs - à peine 1.3 cycle optique - à une cadence de 1 kHz, pour accélérer des électrons par onde de sillage. Ce travail de thèse présente d’une part la première démonstration d’un accélérateur des particules relativistes opéré dans le régime de la bulle à haute cadence. L’utilisation de buses microscopiques a permis l’obtention de charges de dizaines de pC par tir. De plus, cette thèse vise à l’élargissement de notre compréhension des lois d’échelle d’accélération laser-plasma. Nous espérons que notre travail visant à la fiabilisation et l’optimisation de cette source permettra à terme de proposer un instrument accessible et fiable à la communauté scientifique, que ce soit pour la diffraction d’électrons, l’irradiation ultra-brève d’échantillons ou la génération de rayons X. / Continuing progress in laser technology has enabled dramatic advances in laser wakefield acceleration (LWFA), a technique that permits driving particles by electric fields three orders of magnitude higher than in conventional radio-frequency accelerators. Due to significantly reduced space charge and velocity dispersion effects, the resultant relativistic electron bunches have also been identified as a candidate tool to achieve unprecedented sub-10 fs temporal resolution in ultrafast electron diffraction (UED) experiments. High repetition rate operation is desirable to improve data collection statistics and thus washout shot-to-shot charge fluctuations inherent to plasma accelerators. It is well known that high-quality electron beams can be achieved in the blowout, or "bubble" regime, which is at present regularly accessed with ≈ 30 fs Joule-class lasers that can perform up to few shots per second. Our group on the contraryutilized a cutting edge laser system producing few-mJ pulses compressed nearly to a single optical cycle (3.4 fs) to demonstrate for the first time an MeV-grade particle accelerator with properties characteristic to the blowout regime operating at 1 kHz repetition rate. We further investigate the plasma density profile and exact laser pulse waveform effects on the source output, and show that using special gas microjets a charge of tens of pC/shot can be achieved. We expect this technique to lead to a generation of highly accessible and robust instruments for the scientific community to conduct UED experiments or to be used for other applications. This work also serves to expand our knowledge on the scalability of laser-plasma acceleration.
7

Negative frequency at the horizon : scattering of light at a refractive index front

Jacquet, Maxime J. January 2017 (has links)
This thesis considers the problem of calculating and observing the mixing of modes of positive and negative frequency in inhomogeneous, dispersive media. Scattering of vacuum modes of the electromagnetic field at a moving interface in the refractive index of a dielectric medium is discussed. Kinematics arguments are used to demonstrate that this interface may, in a regime of linear dispersion, act as the analogue of the event horizon of a black hole to modes of the field. Furthermore, a study of the dispersion of the dielectric shows that five distinct configurations of modes of the inhomogeneous medium at the interface exist as a function of frequency. Thus it is shown that the interface is simultaneously a black- and white-hole horizon-like and horizonless emitter. The role, and importance, of negative-frequency modes of the field in mode conversion at the horizon is established and yields a calculation of the spontaneous photonic flux at the interface. An algorithm to calculate the scattering of vacuum modes at the interface is introduced. Spectra of the photonic flux in the moving and laboratory frame, for all modes and all realisable increase in the refractive index at the interface are computed. As a result of the various mode configurations, the spectra are highly structured in intervals with black-hole, white-hole and no horizon. The spectra are dominated by a negative-frequency mode, which is the partner in any Hawking-type emission. An experiment in which an incoming positive-frequency wave is populated with photons is assembled to observe the transfer of energy to outgoing waves of positive and negative frequency at the horizon. The effect of mode conversion at the interface is clearly shown to be a feature of horizon physics. This is a classical version of the quantum experiment that aims at validating the mechanism of Hawking radiation.

Page generated in 0.0534 seconds