• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Path integration with non-positive distributions and applications to the Schrödinger equation

Nathanson, Ekaterina Sergeyevna 01 July 2014 (has links)
In 1948, Richard Feynman published the first paper on his new approach to non-relativistic quantum mechanics. Before Feynman's work there were two mathematical formulations of quantum mechanics. Schrödinger's formulation was based on PDE (the Schrödinger equation) and states representation by wave functions, so it was in the framework of analysis and differential equations. The other formulation was Heisenberg's matrix algebra. Initially, they were thought to be competing. The proponents of one claimed that the other was “ wrong. ” Within a couple of years, John von Neumann had proved that they are equivalent. Although Feynman's theory was not fundamentally new, it nonetheless offered an entirely fresh and different perspective: via a precise formulation of Bohr's correspondence principle, it made quantum mechanics similar to classical mechanics in a precise sense. In addition, Feynman's approach made it possible to explain physical experiments, and, via diagrams, link them directly to computations. What resulted was a very powerful device for computing energies and scattering amplitudes - the famous Feynman's diagrams. In his formulation, Feynman aimed at representing the solution to the non-relativistic Schrödinger equation in the form of an “ average ” over histories or paths of a particle. This solution is commonly known as the Feynman path integral. It plays an important role in the theory but appears as a postulate based on intuition coming from physics rather than a justified mathematical object. This is why Feynman's vision has caught the attention of many mathematicians as well as physicists. The papers of Gelfand, Cameron, and Nelson are among the first, and more substantial, attempts to supply Feynman's theory with a rigorous mathematical foundation. These attempts were followed by many others, but unfortunately all of them were not quite satisfactory. The difficulty comes from a need to define a measure on an infinite-dimensional space of continuous functions that represent all possible paths of a particle. This Feynman's measure has to produce an integral with the properties requested by Feynman. In particular, the expression for the Feynman measure has to involve the non-absolutely integrable Fresnel integrands. The non-absolute integrability of the Fresnel integrands makes the measure fail to be positive and to have the countably additive property. Thus, a well-defined measure in the case of the Feynman path integral does not exist. Extensive research has been done on the methods of relating the Feynman path integral to the integral with respect to the Wiener measure. The method of analytic continuation in mass defines the Feynman path integral as a certain limit of the Wiener integrals. Unfortunately, this method can be used as definition for only almost all values of the mass parameter in the Schrödinger equation. For physicists, this is not a satisfactory result and needs to be improved. In this work we examine those questions which originally led to the Feynman path integral. By now we know that Feynman's “ dream ” cannot be realized as a positive and countably additive measure on the path-space. Here, we offer a new way out by modifying Feynman's question, and thereby achieving a solution to the Schrödinger equation via a different kind of averages in the path-space. We give our version of the question that Feynman “ should have asked ” in order to realize the elusive path integral. In our formulation, we get a Feynman path integral as a limit of linear functionals, as opposed to the more familiar inductive limits of positive measures, traditionally used for constructing the Wiener measure, and related Gaussian families. We adapt here an approach pioneered by Patrick Muldowney. In it, Muldowney suggested a Henstock integration technique in order to deal with the non-absolute integrability of the kind of Fresnel integrals which we need in our solution to Feynman's question. By applying Henstock's theory to Fresnel integrals, we construct a complex-valued “ probability distribution functions ” on the path-space. Then we use this “ probability ” distribution function to define the Feynman path integral as an inductive limit. This establishes a mathematically rigorous Feynman limit, and at the same time, preserves Feynman's intuitive idea in resulting functional. In addition, our definition, and our solution, do not place any restrictions on any of the parameters in the Schrödinger equation, and have a potential to offer useful computational experiments, and other theoretical insights.
2

Feynman path integral for Schrödinger equation with magnetic field

Cangiotti, Nicolò 14 February 2020 (has links)
Feynman path integrals introduced heuristically in the 1940s are a powerful tool used in many areas of physics, but also an intriguing mathematical challenge. In this work we used techniques of infinite dimensional integration (i.e. the infinite dimensional oscillatory integrals) in two different, but strictly connected, directions. On the one hand we construct a functional integral representation for solutions of a general high-order heat-type equations exploiting a recent generalization of infinite dimensional Fresnel integrals; in this framework we prove a a Girsanov-type formula, which is related, in the case of Schrödinger equation, to the Feynman path integral representation for the solution in presence of a magnetic field; eventually a new phase space path integral solution for higher-order heat-type equations is also presented. On the other hand for the three dimensional Schrödinger equation with magnetic field we provide a rigorous mathematical Feynman path integral formula still in the context of infinite dimensional oscillatory integrals; moreover, the requirement of independence of the integral on the approximation procedure forces the introduction of a counterterm, which has to be added to the classical action functional (this is done by the example of a linear vector potential). Thanks to that, it is possible to give a natural explanation for the appearance of the Stratonovich integral in the path integral formula for both the Schrödinger and the heat equation with magnetic field.

Page generated in 0.0424 seconds