• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 26
  • 26
  • 12
  • 9
  • 9
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

HIGH POWER PULSED FIBER LASER SOURCES AND THEIR USE IN TERAHERTZ GENERATION 

Leigh, Matthew January 2008 (has links)
In this dissertation I report the development of high power pulsed fiber laser systems. These systems utilize phosphate glass fiber for active elements, instead of the industry-standard silica fiber. Because the phosphate glass allows for much higher doping of rare-earth ions than silica fibers, much shorter phosphate fibers can be used to achieve the same gain as longer silica fibers.This single-frequency laser technology was used to develop an all-fiber actively Q-switched fiber lasers. A short cavity is used to create large spacing between longitudinal modes. Using this method, we demonstrated the first all-fiber Q-switched fiber laser in the 1 micron region.In addition to creating high peak powers with Q-switched lasers, created even higher powers using fiber amplifier systems. High power fiber lasers typically produce spectral broadening through the nonlinear effects of stimulated Raman scattering, stimulated Brullion scattering, and self-phase modulation. The thresholds for these nonlinearities scale inversely with intensity and length. Thus, we used a short phosphate fiber gain stage to reduce the length, and a large core fiber final stage to reduce intensity. In this way we were able to generate high peak power pulses while avoiding visible nonlinearities, and keeping a narrow bandwidth.The immediate goal of developing these high power fiber laser systems was to generate narrowband terahertz radiation. Two different wavelengths were combined into the final amplifier stage at orthogonal polarizations. These were collimated and directed into a GaSe crystal, which has a very high figure of merit for THz generation. The two wavelengths combined in the crystal through the process of nonlinear difference frequency generation. This produced a narrowband beam of THz pulses, at higher powers than previous narrowband THz pulses produced by eyesafe fiber lasers.
12

Tunable Two-Color Ultrafast Yb:Fiber Chirped Pulse Amplifier: Modeling, Experiment, and Application in Tunable Short-Pulse Mid-Infrared Generation

Hajialamdari, Mojtaba January 2013 (has links)
In this thesis, I have developed a tunable two-color two-stage ultrafast Yb:fiber chirped pulse amplifier for the generation of short-pulse mid-infrared (MIR) radiation in the long-wavelength side of the "molecular fingerprint" (2.5-25 μm) using difference frequency generation (DFG) technique. The two colors called blue and red are in the wavelengths 1.03-1.11 μm and are amplified simultaneously in the same Yb-doped fiber amplifier (YDFA) stages in order to reduce the induced environmental noise on the phase difference of the pulses and to minimize the complexity and system cost. I will present numerical simulations on the two-stage YDFA system to amplify a two-color spectrum in the wavelengths 1.03-1.11 μm. The first and second YDFA called preamplifier and main amplifier are single-clad, single-mode and double-clad, single-mode YDFA respectively. From numerical simulations, the optimal length of the preamplifier to have equal power at two colors centered at 1043 nm and 1105 nm are in agreement with experimental results. It is well known that the power of MIR radiation generated by difference frequency mixing of two wavelengths scales up with the product of mixing powers in a fixed-field approximation. Furthermore, for the gain narrowing effect on the short-wavelength side of the YDFA gain profile, the spectral bandwidth of the blue color decreases resulting in pulse broadening. In addition, for the two colors separated largely, the amplified spontaneous emission is intensified. Considering the cited factors, I will present the modeling results on the two-color, two-stage YDFA system that the product of the power of the two colors is maximized for a maximized wavelength separation between the two mixing colors and a minimized gain narrowing on the blue color in order to build an as broadly tunable and powerful as possible ultrafast mid-infrared source by difference frequency mixing of the two colors. In this research, I achieved a wavelength separation as broad as 71 nm between pulses centered at 1038 nm and 1109 nm from the two-color ultrafast YDFA system. I achieved combined average powers of 2.7 W just after the main amplifier and 1.5 W after compressing the two-color pulses centered at 1041 nm and 1103 nm to nearly Fourier transform limited pulses. From autocorrelation measurements, the full width at half maximum (FWHM) of the compressed two-color pulses with the peak wavelengths of 1041 nm and 1103 nm was ~500 fs. By mixing the tunable two-color pulses in a 1-mm-thick GaSe crystal using DFG technique, I achieved tunable short-pulse MIR radiation. In this research, I achieved short-pulse MIR radiation tunable in the wavelengths 16-20 μm. The MIR tuning range from the lower side was limited to the 16 μm because of the 71-nm limitation on the two-color separation and from the upper side was limited to the 20 μm because of the 20-μm cutoff absorption wavelength of GaSe. Based on measured MIR spectra, the MIR pulses have a picosecond pulse duration in the wavelengths 16-20 μm. The FWHM of measured spectra of the MIR pulses increases from 0.3 μm to 0.8 μm as the MIR wavelength increases from 16 μm to 20 μm. According to Fourier transform theory, the FWHM of the MIR spectra corresponds to the bandwidth of picosecond MIR pulses assuming that the MIR pulses are perfectly Fourier-transform-limited Gaussian pulses. In this research, I achieved a maximum average power of 1.5 mW on short-pulse MIR radiation at the wavelength 18.5 μm corresponding to the difference frequency of the 500-fs two-color pulses with the peak wavelengths of 1041 nm and 1103 nm and average powers of 1350 mW and 80 mW respectively. Considering the gain bandwidth, Ti:sapphire is a main competitor to the YDFA to be used in the two-color ultrafast laser systems. In the past, the broad gain bandwidth of Ti:sapphire crystal has resulted in synchronized two-color pulses with a wavelength separation up to 120 nm. Apart from its bulkiness and high cost, Ti:sapphire laser system is limited to a watt-level output average power at room temperature mainly due to Kerr lensing problem that occurs at high pumping powers. In comparison, YDFA as a laser amplifier has a narrower gain bandwidth but it is superior in terms of average power. Optical parametric generation (OPG) and optical parametric amplification (OPA) techniques are two competitors to DFG technique for the generation of short-pulse long-wavelength MIR radiation. Although OPG offers a tunability range as broad as DFG, the MIR output power is lower because of the absence of input signal pulses. From the OPA technique, the tunability range is not as broad as the DFG technique due to limitations with the spectral bandwidth of the optical elements. Currently, quantum cascade lasers (QCLs) are the state-of-art MIR laser sources. At the present time, the tunability range of a single MIR QCL is not as abroad as that achieved from the DFG technique. More, mode-locked MIR QCLs are not abundant mainly because of the fast gain recovery time. Thus, the generation of widely tunable short-pulse MIR radiation from DFG technique such as that developed in this thesis remains as a persistent technological solution. The application of the system developed in this thesis is twofold: on one hand, the tunable two-color ultrashort pulses will find applications for example in pump-probe ultrafast spectroscopy, short-pulse MIR generation, and optical frequency combs generation. On the other hand, the short-pulse MIR radiation will find applications for example in time-resolved MIR spectroscopy to study dynamical behavior of large molecules such as organic and biological molecules.
13

Erbium Fiber Laser Developement For Applications in Sensing

Sindhu, Sunita Unknown Date
No description available.
14

Tunable Two-Color Ultrafast Yb:Fiber Chirped Pulse Amplifier: Modeling, Experiment, and Application in Tunable Short-Pulse Mid-Infrared Generation

Hajialamdari, Mojtaba January 2013 (has links)
In this thesis, I have developed a tunable two-color two-stage ultrafast Yb:fiber chirped pulse amplifier for the generation of short-pulse mid-infrared (MIR) radiation in the long-wavelength side of the "molecular fingerprint" (2.5-25 μm) using difference frequency generation (DFG) technique. The two colors called blue and red are in the wavelengths 1.03-1.11 μm and are amplified simultaneously in the same Yb-doped fiber amplifier (YDFA) stages in order to reduce the induced environmental noise on the phase difference of the pulses and to minimize the complexity and system cost. I will present numerical simulations on the two-stage YDFA system to amplify a two-color spectrum in the wavelengths 1.03-1.11 μm. The first and second YDFA called preamplifier and main amplifier are single-clad, single-mode and double-clad, single-mode YDFA respectively. From numerical simulations, the optimal length of the preamplifier to have equal power at two colors centered at 1043 nm and 1105 nm are in agreement with experimental results. It is well known that the power of MIR radiation generated by difference frequency mixing of two wavelengths scales up with the product of mixing powers in a fixed-field approximation. Furthermore, for the gain narrowing effect on the short-wavelength side of the YDFA gain profile, the spectral bandwidth of the blue color decreases resulting in pulse broadening. In addition, for the two colors separated largely, the amplified spontaneous emission is intensified. Considering the cited factors, I will present the modeling results on the two-color, two-stage YDFA system that the product of the power of the two colors is maximized for a maximized wavelength separation between the two mixing colors and a minimized gain narrowing on the blue color in order to build an as broadly tunable and powerful as possible ultrafast mid-infrared source by difference frequency mixing of the two colors. In this research, I achieved a wavelength separation as broad as 71 nm between pulses centered at 1038 nm and 1109 nm from the two-color ultrafast YDFA system. I achieved combined average powers of 2.7 W just after the main amplifier and 1.5 W after compressing the two-color pulses centered at 1041 nm and 1103 nm to nearly Fourier transform limited pulses. From autocorrelation measurements, the full width at half maximum (FWHM) of the compressed two-color pulses with the peak wavelengths of 1041 nm and 1103 nm was ~500 fs. By mixing the tunable two-color pulses in a 1-mm-thick GaSe crystal using DFG technique, I achieved tunable short-pulse MIR radiation. In this research, I achieved short-pulse MIR radiation tunable in the wavelengths 16-20 μm. The MIR tuning range from the lower side was limited to the 16 μm because of the 71-nm limitation on the two-color separation and from the upper side was limited to the 20 μm because of the 20-μm cutoff absorption wavelength of GaSe. Based on measured MIR spectra, the MIR pulses have a picosecond pulse duration in the wavelengths 16-20 μm. The FWHM of measured spectra of the MIR pulses increases from 0.3 μm to 0.8 μm as the MIR wavelength increases from 16 μm to 20 μm. According to Fourier transform theory, the FWHM of the MIR spectra corresponds to the bandwidth of picosecond MIR pulses assuming that the MIR pulses are perfectly Fourier-transform-limited Gaussian pulses. In this research, I achieved a maximum average power of 1.5 mW on short-pulse MIR radiation at the wavelength 18.5 μm corresponding to the difference frequency of the 500-fs two-color pulses with the peak wavelengths of 1041 nm and 1103 nm and average powers of 1350 mW and 80 mW respectively. Considering the gain bandwidth, Ti:sapphire is a main competitor to the YDFA to be used in the two-color ultrafast laser systems. In the past, the broad gain bandwidth of Ti:sapphire crystal has resulted in synchronized two-color pulses with a wavelength separation up to 120 nm. Apart from its bulkiness and high cost, Ti:sapphire laser system is limited to a watt-level output average power at room temperature mainly due to Kerr lensing problem that occurs at high pumping powers. In comparison, YDFA as a laser amplifier has a narrower gain bandwidth but it is superior in terms of average power. Optical parametric generation (OPG) and optical parametric amplification (OPA) techniques are two competitors to DFG technique for the generation of short-pulse long-wavelength MIR radiation. Although OPG offers a tunability range as broad as DFG, the MIR output power is lower because of the absence of input signal pulses. From the OPA technique, the tunability range is not as broad as the DFG technique due to limitations with the spectral bandwidth of the optical elements. Currently, quantum cascade lasers (QCLs) are the state-of-art MIR laser sources. At the present time, the tunability range of a single MIR QCL is not as abroad as that achieved from the DFG technique. More, mode-locked MIR QCLs are not abundant mainly because of the fast gain recovery time. Thus, the generation of widely tunable short-pulse MIR radiation from DFG technique such as that developed in this thesis remains as a persistent technological solution. The application of the system developed in this thesis is twofold: on one hand, the tunable two-color ultrashort pulses will find applications for example in pump-probe ultrafast spectroscopy, short-pulse MIR generation, and optical frequency combs generation. On the other hand, the short-pulse MIR radiation will find applications for example in time-resolved MIR spectroscopy to study dynamical behavior of large molecules such as organic and biological molecules.
15

Propagation et contrôle adaptatif de la lumière amplifiée dans une fibre multimode / Adaptive control of amplified light through a multimode fiber

Florentin, Raphaël 06 November 2017 (has links)
Les fibres multimodales ont longtemps été délaissées en raison des distorsions temporelles et spatiales subies par la lumière au cours de sa propagation dans la fibre. Ces distorsions sont les conséquences des couplages modaux et de la disparité des temps de propagation des modes de fibre. Bien que complexe, la propagation dans un guide multimodal reste déterministe et peut être maitrisée par une structuration cohérente de l’excitation. La manipulation d’ondes en présence de gain dans la fibre optique, au coeur de ces travaux de thèse, constitue une problématique plus complexe encore puisque la carte de saturation des modes hétérogène rend la propagation non linéaire. Deux types d’amplificateurs multimodaux à fibre dopée ytterbium ont été étudiés : une fibre à saut d’indice à large coeur et une fibre à coeurs multiples couplés. Le contrôle spatial du faisceau transmis est obtenu en structurant le front d’onde incident à l’aide d’un miroir déformable couplé à un algorithme itératif. En régime d’excitation continue, cette technique de contrôle adaptatif, robuste et rapide a permis de focaliser le rayonnement en extrémité de fibre sur des spots uniphases, malgré les couplages modaux, l’hétérogénéité de gain modal et la saturation du gain. Il a aussi été démontré que la mise en forme du front d’onde incident ne réduisait pas le gain d’amplification. Une puissance de 2,8 W a été confinée dans un unique spot avec un gain de12 dB. Des structures intensimétriques plus complexes de type « multispots » ont également été obtenues. Enfin, la focalisation à travers la fibre amplificatrice a été réalisée avec succès en régime femtoseconde pour lequel la propagation s’accompagne de couplages spatio-temporels. Une première démonstration de principe a permis d’obtenir 120 kW de puissance crête avec un gain de 14 dB dans une impulsion uniquement limitée par la dispersion chromatique (350 fs), le profilage spatial permettant aussi de contrôler l’impulsion amplifiée par la sélection de modes dont les vitesses de groupe sont proches. / For a long time, multimode fibers were sparsely investigated because of the spatial and temporal distortions occurring during propagation across the fiber. Those distortions are consequences of mode coupling and modal propagation constant disparity. Although the propagation in a multimode waveguide is complex, it is deterministic and can be controlled by spatial shaping of the excitation. Considering an amplifying medium, the problem, at the heart of this thesis, is more complex because of nonlinear propagation due to heterogeneous gain saturation. Two kinds of Ytterbium doped multimode fiber amplifiers were tested: a step index fiber with a large core diameter and a coupled core multicore fiber. Spatial control of the output of the amplifier was achieved using a deformable mirror in combination with an iterative algorithm. In the case of a continuous wave excitation of the amplifier, we demonstrated that it was possible to confine light in a single-phase spot with a 2,8 W average power and 12 dB gain. We also demonstrated that the spatial shaping of the output has no effect on the amplifier gain. Furthermore, we obtained more complex output fields of multi-spot structure. Finally, focalization through the amplifying fiber was successfully demonstrated in femtosecond regime for which spatio-temporal couplings occur. A 120 kW peak power spot with a gain of 14 dB in a 350 fs pulse was obtained in a first experimental proof of concept. The spatial shaping allows also to control the duration of the amplified pulse by selection of modes with close group velocities.
16

Mode-division Multiplexed Transmission In Few-mode Fibers

Bai, Neng 01 January 2013 (has links)
As a promising candidate to break the single-mode fiber capacity limit, mode-division multiplexing (MDM) explores the spatial dimension to increase transmission capacity in fiberoptic communication. Two linear impairments, namely loss and multimode interference, present fundamental challenges to implementing MDM. In this dissertation, techniques to resolve these two issues are presented. To de-multiplex signals subject to multimode interference in MDM, Multiple-InputMultiple-Output (MIMO) processing using adaptive frequency-domain equalization (FDE) is proposed and investigated. Both simulations and experiments validate that FDE can reduce the algorithmic complexity significantly in comparison with the conventional time-domain equalization (TDE) while achieving similar performance as TDE. To further improve the performance of FDE, two modifications on traditional FDE algorithm are demonstrated. i) normalized adaptive FDE is applied to increase the convergence speed by 5 times; ii) masterslave carrier recovery is proposed to reduce the algorithmic complexity of phase estimation by number of modes. Although FDE can reduce the computational complexity of the MIMO processing, due to large mode group delay (MGD) of FMF link and block processing, the algorithm still requires enormous memory and high hardware complexity. In order to reduce the required tap length (RTL) of the equalizer, differential mode group delay compensated fiber (DMGDC) has been proposed. In this dissertation, the analytical expression for RTL is derived for DMGDC systems under the weak mode coupling assumption. Instead of depending on the overall MGD of the link iii in DMGD uncompensated (DMGDUC) systems, the RTL of DMGDC systems depend on the MGD of a single DMGDC fiber section. The theoretical and numerical results suggest that by using small compensation step-size, the RTL of DMGDC link can be reduced by 2 orders of magnitude compared to DMGDUC link. To compensate the loss of different modes, multimode EDFAs are presented with reconfigurable multimode pumps. By tuning the mode content of the multimode pump, modedependent gain (MDG) can be controlled and equalized. A proto-type FM-EDFA which could support 2 LP modes was constructed. The experimental results show that by using high order mode pumps, the modal gain difference can be reduced. By applying both multimode EDFA and equalization techniques, 26.4Tb/s MDM-WDM transmission was successfully demonstrated. A brief summary and several possible future research directions conclude this dissertation.
17

Peak Power Scaling Of Nanosecond Pulses In Thulium Based Fiber Lasers

Gaida, Christian 01 January 2013 (has links)
Thulium based fiber lasers represent a promising alternative for pulse energy scaling and high peak power generation with ytterbium based systems at 1µm. Advantages of thulium arise from the operation at longer wavelengths and a large gain bandwidth (1.8-2.1µm). Nonlinear effects, such as self phase modulation, stimulated Raman scattering and stimulated Brillouin scattering generally limit peak power scaling in fiber lasers. The longer wavelength of thulium fiber lasers and large mode field areas can significantly increase the nonlinear thresholds. Compared to 1µm systems, thulium fiber lasers enable single mode guidance for two times larger mode field diameter in step index fibers. Similar behavior is expected for index guiding thulium doped photonic crystal fibers. In this work a novel thulium doped rod type photonic crystal fiber design with large mode field diameter ( > 50µm) was first characterized in CW-lasing configuration and then utilized as final amplifier in a two stage master oscillator power amplifier. The system generated MW-level peak power at 6.5ns pulse duration and 1kHz repetition rate. This world record performance exemplifies the potential of thulium fiber lasers to supersede ytterbium based systems for very high peak power generation in the future. As part of this work a computer model for the transient simulation of pulsed amplification in thulium based fiber lasers was developed. The simulations are in good agreement with the experimental results. The computer model can be used for efficient optimization of future thulium based fiber amplifier designs.
18

Performance considerations in high-speed TDFA-band silicon photonic micro-ring resonator modulators

Hagan, David January 2019 (has links)
The ever-increasing bandwidth requirements to support telecommunications infrastructure necessitates large-scale fabrication of low-cost and scalable silicon photonic integrated circuits. Wavelength-division multiplexing (WDM) schemes are fundamentally limited in the number of channels supported in long-haul transmission by the erbium doped fiber amplifier (EDFA). To address this, researchers have turned focus toward the thulium doped fiber amplifier (TDFA), which provides 3× more bandwidth. This thesis describes the development of high-speed silicon-on-insulator (SOI) micro-ring resonator (MRR) modulators optimized for wavelengths in the TDFA band. Chapter 2 presents a theoretical performance comparison between MRR modulators designed for optimized use at EDFA and TDFA wavelengths. Chapter 3 presents an experimental study of optical loss mechanisms at extended wavelengths which suggests reduced waveguide scattering and enhanced divacancy defect absorption as well as larger bending and substrate leakage losses when compared with shorter wavelengths. An electronic variable optical attenuator is characterized in Chapter 4 to experimentally verify the predicted 1.7× TDFA-band free-carrier effect enhancement over EDFA-band wavelengths. The first steady-state operation of an MMR modulator near a central wavelength of 1.97 µm is also demonstrated under the enhanced free-carrier effect. Chapter 5 demonstrates the first high-speed reverse bias operation of an MRR modulator with a measured bandwidth of 12.5 GHz, and an on-chip optical link consisting of a modulator followed by a defectmediated detector with open eye-diagrams up to data rates of 12.5 Gbps. Chapter 6 introduces an electrically-driven post-fabrication defect-assisted resonance trimming technique via local annealing for use in MRR devices. Chapter 7 presents a Monte Carlo simulation of resonance alignment in multi-MRR systems subjected to spatially-correlated wafer variation created through the Virtual Wafer Model process to predict thermal power consumption and power reduction through resonance trimming. / Thesis / Doctor of Philosophy (PhD)
19

Development of "Core-Suction" Technique for Fabrication of Highly Doped Fibers for Optical Amplification and Characterization of Optical Fibers for Raman Amplification

Goel, Nitin Kumar 31 October 2005 (has links)
This thesis presents a novel technique named "Core Suction" for fabricating optical fiber preforms for manufacturing highly doped fibers (HDFs) for optical amplification (Raman effect based or Erbium fiber based). The technique involves drawing the molten non-conventional core glass material into the silica cladding tube to form the preform. The developed technique is simple, inexpensive and shows great potential for fabricating preforms of highly nonlinear non-conventional multi-component glasses as the core material. Preforms were made with various core glasses such as Schott SF6, Lead-Tellurium-Germanate, Lead-Tellurium-Germanate- Neodymium -Erbium and MM2 in silica cladding tubes and then pulled into fibers. The fabricated fibers were measured for refractive index profile, loss spectrum and spontaneous Raman spectra. Elemental analysis of the fiber samples was also performed using an electron microprobe. Erbium doped fiber amplifiers (EDFAs) were setup using 30 cm, 5cm and 1 cm lengths of fabricated erbium doped fibers and their gain spectra measured. The distributed gain spectrum for an EDFA was also measured using an optical frequency domain reflectometery (OFDR) technique. Commercial dispersion compensated fiber (DCF) with very high GeO2 doping was used to setup a Raman amplifier and the gain spectrum measured. One of the needs of Raman amplification in optical fibers is to predict an accurate Raman gain, based on the fiber's refractive index profile. A method of predicting Raman gain in GeO2 doped fibers is presented and the predicted Raman gain values are compared with the measured ones in the same fibers. Raman gain issues like the dependence of the Raman gain on the GeO2 concentration, polarization dependence were taken into account for the gain calculations. An experimental setup for Raman gain measurements was made and measurement issues addressed. Polarization dependence of the Raman gain in one kilometer of polarization maintaining fiber was also measured. / Ph. D.
20

Étude, réalisation et applications d’une chaîne amplificatrice laser compacte pour l’allumage de turbomoteurs

Tison, Guillaume 22 April 2013 (has links)
Ce travail porte sur l’étude et la réalisation d’une cellule d’allumage laser pour turbomoteurs. Une étude bibliographique nous a permis d’identifier les caractéristiques nécessaires : des impulsions nanosecondes d’au moins 10mJ. La spécificité de l’application impose de nombreuses contraintes qui ont influencé le choix d’une architecture avec deux étages amplificateurs : un amplificateur fibré suivi d’un amplificateur à base de fibre cristalline. Nous avons développé un code permettant de simuler l’amplification d’une impulsion nanoseconde dans ces milieux et ainsi déterminé les caractéristiques techniquesoptimales de chaque étage amplificateur. Ces résultats ont permis la réalisation d’une chaîne d’allumage et sa caractérisation. Une étude particulière del’amplificateur fibré a permis de maîtriser l’apparition d’effets non-linéaires limitants. Finalement, nous démontrons le potentiel de notre solution laserpar plusieurs campagnes d’allumage sur différents bancs moteurs. / This work deals with the design and the construction of a laser ignitionsystem for turbine engines. A review of the dedicated literature allowed us toidentify the required characteristics : nanosecond pulses with at least 10 mJ ofenergy. Our specific application imposes numerous constraints which directlyinfluenced our choice of two amplifier stages : a fiber amplifier followed by acrystalline-fiber based amplifier. We developped a simulation describing theamplification of nanosecond pulses through these two medias and thus de-termined the optimal technical characteristics of each amplifier stage. Theseresults lead to the realization of an laser ignition system that we completelycharacterised. A specific study of the fiber amplifier allowed us to understandand control the appearance of non-linear limiting phenomena. Eventually, wedemonstrate the capabilities of our solution by several laser-ignition field stu-dies.

Page generated in 0.0635 seconds