• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 221
  • 50
  • 22
  • 14
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 436
  • 436
  • 170
  • 65
  • 45
  • 42
  • 42
  • 38
  • 37
  • 37
  • 31
  • 31
  • 31
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Interdigitated electrodes and anisotropic diffraction analysis of phase and/or lossy gratings for bulk and integrated applications

Glytsis, Elias N. 12 1900 (has links)
No description available.
112

Performance evaluation of practival FSK, CPFSK, and ASK detection schemes for coherent optical fiber communication systems

Hao, Miin-Jong 05 1900 (has links)
No description available.
113

A heat transfer and fluid flow model for the drawing of optical fibers

Parise, Ronald J. 05 1900 (has links)
No description available.
114

HEALTH MONITORING OF MACHINERY FLUIDS USING EXCITATION-EMISSION MATRIX SPECTROSCOPY AND CAVITY RING-DOWN SPECTROSCOPY

Omrani, HENGAMEH 25 April 2014 (has links)
The quality of machinery liquids plays a critical role in ensuring safe and cost-effective operation of engines. Especially in the aviation industry, there is a great need for real-time and online monitoring of the purity, lubricity and age of machinery fluids. In this work, two optical techniques, excitation-emission matrix spectroscopy (EEMS) and cavity ring-down spectroscopy (CRDS), are used for monitoring of degradation and contamination of aero-turbine lubricants and jet fuels using optical fiber probes. We implement EEMS combined with a modified fiber probe design to characterize lubricant quality through the characteristic fluorescence of antioxidant additives. Multi-way analysis procedures, such as parallel factor analysis, are applied to correlate spectral features to antioxidant concentration, oxidative stability, and lubricant age. The spectroscopic data are then correlated to commonly used, off-line parameters such as the induction time and the breakdown number. It is shown that the decrease in fluorescence intensities of antioxidants coincides with the decomposition of the oil base stock. The induction times of synthetic jet turbine oil degraded at 150ºC, 195ºC and 215ºC are found to be at about 10,000, 3,500 and 400 min respectively. Simple kinetic models are developed that are capable of describing antioxidant reactions as pseudo first-order processes. We also demonstrate that with fluorescence detection it is possible to determine the concentration of oil contamination in jet fuel from about 10 to 1000 ppmv. In addition, a fiber-loop cavity ring-down spectrometer has been developed to quantitatively identify oil contamination of jet fuel by measuring optical absorption in the UV region. CRDS is a very sensitive, path-enhanced absorption technique that may be used for trace-species measurements in gas and liquids. The absorption measurements on samples with small volumes are characterized by measuring the concentration of turbine oil in jet fuel from 100 000 ppmv to a limit of detection of 400 ppmv. In summary, the obtained results permit us to specify the life time of lubrication oil and to determine the contamination of jet fuel with turbine oil qualitatively and quantitatively. In a simple optical configuration the fiber-coupled EEM and CRD methods permit in situ sampling of the machinery fluids. / Thesis (Ph.D, Chemistry) -- Queen's University, 2014-04-25 13:24:37.761
115

Fiber optic sensors and spectrometry for the detection of volatile gem-polyhalogenated hydrocarbons

Louch, Jeff 17 May 1991 (has links)
A fiber optic fluorometer utilizing a double-fiber optic probe was constructed. The absolute fluorescence signal and effective collection efficiency are approximately one fifth those of typical cuvette fluorometers and agree with those predicted by theory. A quinine sulfate calibration curve shows linearity from a detection limit of 10 pg/mL to 10 μg/mL. Single- and double-fiber probe configurations were also compared. The double-fiber configuration provided better detection limits due to its superior signal-to-background ratio. A discussion of sensor methodology for the monitoring of reaction intermediates is presented and a simple kinetic model for predicting the time dependent response of such sensors is developed. Two possible mechanisms for the Fujiwara reaction with chloroform are discussed. The effect of pyridine, water, and base concentrations on reaction kinetics was evaluated to develop single-phase Fujiwara reagent mixtures for both fluorometric and spectrophotometric determinations of chloroform. A unique "continuous-exposure" apparatus allowing vapor phase transport of chloroform from an aqueous sample to a conventional cuvette was constructed. The spectrophotometric detection limit for chloroform is 11 ng/mL and the method was shown to be suitable for the analysis of tap water. Two fiber optic chemical sensors (FOCS) for the detection of chloroform were developed. An aliquot of the optimized fluorometric reagent solution is held in contact with the fiber optic probe within a light-tight enclosure and is isolated from a bulk sample by a trapped headspace. One FOCS utilizes 1.3 mL of reagent held in a reservoir and the other utilizes a 10-μL drop of reagent suspended on the sensing tips of the fiber optic probe. Chloroform vapor from the sample migrates into the FOCS and reacts with the reagent to produce a fluorescent reaction intermediate which is monitored at 590 nm; the rate of increase in the fluorescence signal is related to chloroform concentration. Both FOCSs give detection limits better than 0.1 ng/mL. The response and total measurement times are comparable for the two FOCSs, and the duration of the linear response is limited by inner-filter effects. The response to a number of volatile GPHHCs including the trihalomethanes are reported. Analyses of tap water for chloroform with the reservoir FOCS and GC/MS were in excellent agreement. / Graduation date: 1992
116

An automated micro-grinding system for the fabrication of precision micro-scale profiles

Milton, Gareth Edward, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2006 (has links)
Production of micro-scale components is an important emergent field. One underdeveloped area is the production of micro-scale 3D surfaces, which has important applications in micro-optics and fibre optic sensors. One particular application is the production of micro-lenses. With scales of less than 200 ??m these lenses can improve light coupling efficiencies in micro-optic systems. However, current lens production techniques have limitations in accuracy and versatility. Creating these surfaces through mechanical micro-grinding has the potential to improve the precision and variety of profiles that can be produced, thus improving transmission efficiencies and leading to new applications. This work presents a novel micro-grinding method for the production of microscale asymmetric, symmetric and axisymmetric curved components from brittle materials such as glasses. A specialised micro-grinding machine and machining system has been designed, constructed and successfully tested and is presented here. This system is capable of producing complex profiles directly on the tips of optical fibre workpieces. A five degree of freedom centring system is presented that can align and rotate these workpieces about a precision axis, enabling axisymmetric grinding. A machine vision system, utilising a microscope lens system and sub-pixel localisation techniques, is used to provide feedback for the process, image processing techniques are presented which are shown to have a sensing resolution of 300 nm. Using these systems, workpieces are centred to within 500 nm. Tools are mounted on nanometre precise motion stages and motion and infeed are controlled. Tooling configurations with flat and tangential grinding surfaces are presented along with control and path generation algorithms. The capabilities and shortcomings of each are presented along with methods to predict appropriate feed rates based on experimental data. Both asymmetric and axisymmetric flat and curved micro-profiles have been produced on the tips of optical fibres using this system. These are presented and analysed and show that the system, as described, is capable of producing high quality micro-scale components with submicron dimensional accuracy and nanometric surface quality. The advantages of this technique are compared with other processes and discussed. Further development of the system and technique are also considered.
117

Imaging based sensor arrays /

Bronk, Karen Srour. January 1996 (has links)
Thesis (Ph.D.)--Tufts University, 1996. / Adviser: David R. Walt. Submitted to the Dept. of Chemistry. Includes bibliographical references. Access restricted to members of the Tufts University community. Also available via the World Wide Web;
118

Photonic bus and photonic mesh networks : design techniques in extremely high speed networks /

Bignell, Allan M. January 1997 (has links)
Thesis (Ph.D.) -- McMaster University, 1998. / Includes bibliographical references. Also available via World Wide Web.
119

A fiber optic polarimeter for use in chemical analysis /

Hamner, Vince, January 1990 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1990. / Vita. Abstract. Includes bibliographical references (leaves 187-195). Also available via the Internet.
120

Propagation effects in optical waveguides, fibres and devices /

Tomljenovic-Hanic, Snjezana. January 2003 (has links)
Thesis (Ph.D.)--Australian National University, 2003.

Page generated in 0.0673 seconds