Spelling suggestions: "subject:"fiberoptic"" "subject:"fibreoptic""
1 |
FIBER OPTIC COMMUNICATIONS IN A TELEMETRY SYSTEMHicks, William T. 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / This paper discusses the conversion of an existing telemetry system to the use of fiber optic
communications. The change was implemented to provide expanded capabilities of existing capital
assets with a minimum of investment. The paper reviews the design constraints and options considered
for a specific flight test program. The different options, such as fiber type, connector type, wavelength,
bit rate, and encoding method, are compared and discussed as to their applicability, reliability, and cost
effectiveness in a telemetry environment. The paper discusses the solution selected and the capabilities
of the final design, as compared to the initial system.
|
2 |
A multi-sensor global navigation system for autonomous mobile robotsHope, Julian Charles January 1995 (has links)
No description available.
|
3 |
DESIGN AND ANALYSIS OF FREQUENCY MODULATED FIBER-OPTIC COMMUNICATION SYSTEMYang, Chenyu January 2016 (has links)
Despite the fact that frequency modulation (FM) was firstly applied to radio signaling 80 years ago (1936, by Edwin Howard Armstrong), it has never been deployed in fiber-optic communication systems. In this thesis, a novel frequency modulated fiber-optic communication system with optical discriminator is proposed. The noise configuration and anti-dispersion property of the FM system are investigated through an analytical model that has been derived and validated with numerical simulations. The performance of the proposed FM system is compared with an amplitude modulated (AM) fiber-optic communication system, owing to the fact that the widely used modulation formats, intensity modulation and quadrature amplitude modulation (QAM), can be extracted as a model of the basic AM format. Depending on the property of the filter, two types of frequency discriminators are discussed: the leading edge filter (LEF) and the tail edge filter (TEF). Since the amplified spontaneous emission (ASE) noise is averagely distributed without any frequency dependence, the noise characteristics are not affected by the choice of the frequency discriminator. However, when it comes to the dispersion impairment, the difference between two frequency discriminators is dramatic because the distortion induced by dispersion strongly hinges on the operated frequency.
The results show that, with the presence of noise, the proposed FM scheme can lead to one or two orders of magnitude enhancement in the system’s output signal-to-noise ratio (SNR) as compared to that of the conventional AM scheme. Also, with the presence of dispersion, it is proved that the span of the FM system can reliably reach 110km with bit rate up to 10Gbit/s, surpassing the AM system with a maximum signal reach of 70km. A real application, with the presence of both noise and dispersion, demonstrates the overall superiority of the FM system’s performance over that of the AM system. The obtained results suggest a promising future for the FM technique in fiber-optic communication. / Thesis / Master of Applied Science (MASc)
|
4 |
A High Performance MIL-STD-1773 Data BusZheng, Li, Yu-De, Ni, Jian-Guo, Zhang 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, California / This paper gives detailed ideas and methods about the design and development of high performance MIL-STD-1773 airborne fiber optic data bus. To reject impulsive interference efficaciously, the large core and large numerical aperture fiber optics are adopted, as well as high- emitted power LEDs and a low noise optical receiver structure to get high signal-to-noise ratio at decision time. Two new modulation technique----digital frequency shift keying and partial tri-level Manchester are recommended, which are very attractive in the design of modern optical bus. Meanwhile, VLSI chips COM1553B are used to construct bus control interface unit, thus many advantages have been brought out.
|
5 |
An integrated optical microcalorimeter /Bhagwandin, Bryon D. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves 73-77).
|
6 |
Dual Processing Spatially Distributed Integrating Fiber Optic Sensors for Non-intrusive Patient MonitoringXu, Xiaohua 04 May 2005 (has links)
Given the rapid aging of the worldâ s population, improvements in technology for automation of patient care and documentation are badly needed. This project is based on previous research that demonstrated a â smartâ bed that can non-intrusively monitor a patient in bed and determine a patient's respiration, heart rate and movement without intrusive or restrictive medical measurements. The â smartâ bed is an application of spatially distributed integrating fiber optic sensors. The basic concept is that any patient movement that also moves an optical fiber within a specified area will produce a change in the optical signal. A statistical mode (STM) sensor and a high order mode excitation (HOME) sensor were previously investigated, based on which the author developed the present design including both modal modulation approaches. Development was made in both hardware and software for the combined STM/HOME sensor: a special lens system was installed allowing only the high order modes of the optical fiber to be excited and coupled into the sensor; computer-processing method was used for handling output from the dual STM-HOME sensor, which would offer comprehensive perturbation analysis for more reliable patient monitoring. Experimental results of simulating human body breathing and heartbeats by periodic mechanical perturbations are also presented, and the relative advantage and drawbacks of the two modal modulation approaches are discussed. / Master of Science
|
7 |
Electronic Mitigation of Polarization Mode DispersionPoirrier, Julien 23 August 2000 (has links)
Polarization Mode Dispersion induces polarization dependent propagation. Consequently it generates a multiple imaging of the light pulse carrying the information. Its first order appears as a dual path fading channel of Maxwellian statistics. It results in harmful impairments that prevent the upgrade and installation of high bit-rate systems. The random process PMD exhibits a strong frequency dependence, so that its amelioration requires channel by channel, non-linear, adaptive mitigation. Electronic mitigation appears as a very attractive solution to overcome the limit set by the PMD.
Consequently, we considered the implementation of these solutions at the receiver in the electrical domain. We verified that these linear and non-linear equalization techniques can greatly reduce the power penalty due to PMD. Equalization's performance depends highly on the type of systems considered. For the two main types of systems: thermal noise limited systems and systems exhibiting ASE (systems using optical amplifiers), we demonstrated and quantified the induced improvement (measured as power penalty reduction). The most sophisticated technique that we considered (NLC+FDE) handles any kind of first order PMD within a 4 dB margin in the thermal noise limit. This extended to a 11 dB margin in the presence of ASE. This comes from the limitation set by the signal dependence of the noise. In fact, these DSP techniques do a better job at reducing very high penalty. Consequently, for a power and ISI limited link, it may be required to associate to electronic solutions optical compensation in order to reach acceptable performance. On the other hand, for links having large power margin or exhibiting reasonable PMD, electronic techniques appear as an easy, inexpensive and convenient solution.
We derived in this work the bounds to NLC performance in the presence of ASE. Therefore, we extended the usual results of the thermal noise limit to the particular case of signal dependent noise. We also made clear that optical systems, because of their noise specificities can not be studied or designed as others links. Notions such as eye opening, SNR and ISI need to be carefully defined and adapted to this case.
We have provided in this work PMD dependent power penalty map for known systems. Given the link's statistics and characteristics, one can determine, following our structure, which mitigation techniques allow upgrade. / Master of Science
|
8 |
AN EVENT TIMING SYSTEM USING FIBER OPTIC SENSORSOtis, Craig H., Lewis, Steve M. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, California / A fiber optic event timing system was developed for the High Speed Test Track at
Holloman Air Force Base, Alamogordo, NM. The system uses fiber optic sensors to detect
the passage of rocket sleds by different stations along the track. The sensors are connected
by fiber optic cables to an electronics package that records the event time to a resolution of
100 nanoseconds. By use of a GPS receiver as the timebase, the event time is stored to an
absolute accuracy of 300 nanoseconds. Custom VMEbus boards were developed for the
event timing function, and these boards are controlled by a programmable high speed
sequencer, which allows for complicated control functions. Each board has 4 electro-optic
channels, and multiple boards can be used in a VMEbus card cage controlled by a single
board computer. The system has been tested in a series of missions at the Test Track.
|
9 |
Feasibility of fiber optic sensors in sensing high refractive index for the potential application of acquiring solubility and diffusivity of gases and supercritical fluids in polymersLee, Keonhag 04 August 2016 (has links)
Many properties of polymers can be affected by dissolving gases and supercritical
fluids at high temperatures and pressures. Solubility and diffusivity are crucial parameters in polymer processing applications that indicates the content of gases and supercritical fluids in a polymer. Hence, different devices for measuring solubility and diffusivity have been researched, but most of the devices used today are very complex, expensive, and requires long experiment time. In this final thesis, the feasibility of fiber optic sensors as measurement devices for solubility and diffusivity of gas/SCF in polymers have been investigated. Many of the polymers used in polymer processing have high refractive index, from 1.40 to 1.60. However, most of the refractive index sensors based on fiber optics only operate in refractive index ranges of 1 to 1.44 because once the surrounding refractive index becomes greater than that of cladding, the total internal reflection is lost and only small portion of the light propagation occurs. This final thesis first reviews the current methods to measure solubility and diffusivity of gases and supercritical fluids in polymers. In addition, different types of fiber optics sensors used for sensing the refractive index are reviewed. Then, the thesis presents cost efficient, but effective fiber optic refractive index sensors, which are the silver nanoparticle coated LPG sensor, uncoated PCF MZI sensor, silver nanoparticle PCF MZI sensor, and the transmission intensity based gap sensor, to sense the surrounding refractive index in the region greater than the cladding, for the future application of solubility and diffusivity measurement. Moreover, future works that would help in sensing solubility and diffusivity of gas in polymers are also proposed. / Graduate
|
10 |
Buried fiber optic intrusion sensorMaier, Eric William 30 September 2004 (has links)
A distributed fiber optic intrusion sensor capable of detecting intruders from the pressure of their weight on the earth's surface was investigated in the laboratory and in field tests. The presence of an intruder above or in proximity to the buried sensor induces a phase shift in light propagating along the fiber which allows for the detection and localization of intrusions. Through the use of an ultra-stable erbium-doped fiber laser and phase sensitive optical time domain reflectometry, disturbances were monitored in long (several km) lengths of optical fiber. Narrow linewidth and low frequency drift in the laser were achieved through a combination of optical feedback and insulation of the laser cavity against environmental effects. The frequency drift of the laser, characterized using an all-fiber Mach Zehnder interferometer, was found to be less than 1 MHz/min, as required for operation of the intrusion detection system. Intrusions were simulated in a laboratory setting using a piezoelectric transducer to produce a controllable optical phase shift at the 2 km point of a 12 km path length. Interrogation of the distributed sensor was accomplished by repetitively gating light pulses from the stable laser into the sensing fiber. By monitoring the Rayleigh backscattered light with a photodetector and comparing traces with and without an induced phase shift, the phase disturbances were detected and located. Once the feasibility of such a sensor was proven in the laboratory, the experimental set up was transferred to Texas A&M's Riverside Campus. At the test site, approximately 40 meters of fiber optic cable were buried in a triangle perimeter and then spliced into the 12 km path length which was housed inside the test facility. Field tests were conducted producing results comparable to those found in the laboratory. Intrusions over this buried fiber were detectable on the φ-OTDR trace and could be localized to the intrusion point. This type of sensor has the potential benefits of heightened sensitivity, covertness, and greatly reduced cost over the conventional seismic, acoustic, infrared, magnetic, and fiber optic sensors for monitoring long (multi-km) perimeters.
|
Page generated in 0.0514 seconds