• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving bond of fiber-reinforced polymer bars with concrete through incorporating nanomaterials

Wang, X., Ding, S., Qiu, L., Ashour, Ashraf, Wang, Y., Han, B., Ou, J. 07 May 2022 (has links)
Yes / The bond between FRP bars and concrete, the foremost performance for implementation of such reinforcements to corrosion-free concrete structures, is still unsatisfied due to the weak nature of duplex film in the interface. The existing approaches show low efficiency in improving the microstructures and bond between FRP bars and concrete. To address these issues, this paper provided a new approach for improving the bond between FRP bars and concrete by incorporating nanomaterials, as well as explored the modifying mechanisms and established the bond-slip models. For these purposes, the pull-out test, scanning electron microscope observation, as well as energy dispersive spectrometry analysis were performed. The experimental results demonstrated that the presence of nanomaterials increased the ultimate bond strengths between glass/carbon FRP bars and concrete by up to 16.2% and 37.8%, while the corresponding slips decreased by 28.7% and 35.4%, respectively. Such modification effects can be attributed to the optimized intrinsic composition and the reduced pore content of hydration products in the interface, especially in the duplex film, through the nanomaterial enrichment and nano-core effects. The bond-slip relationship between FRP bars and concrete with nanomaterials can be accurately predicted by the mBPE model. / The authors would like to thank the funding offered by the National Science Foundation of China (51978127 and 51908103), and the Fundamental Research Funds for the Central Universities (DUT21RC(3) 039).

Page generated in 0.0657 seconds