• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 753
  • 596
  • 257
  • 118
  • 53
  • 17
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 14
  • 14
  • 10
  • Tagged with
  • 2162
  • 566
  • 467
  • 250
  • 214
  • 214
  • 204
  • 201
  • 175
  • 166
  • 138
  • 133
  • 121
  • 121
  • 106
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Nano-grinding for fabrication of microlenses on optical fibers endfaces

Gharbia, Yousef Ahmed, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2003 (has links)
This work presents mechanical nano-grinding as an alternative technique for the fabrication of optical fibers endface microlenses. It also presents a novel surface-roughness improvement technique called Loose Abrasive Blasting (LAB). Traditionally, the majority of such microlenses are made using either chemical etching or heating and pulling methods. Despite the success of these methods, they suffer some common drawbacks such as the lack of controllability on the produced lens profile. Consequently the possible variations of the lens profiles that can be made by these methods are also limited. The difficulty to center the lens on the fiber core is another problem associated with heating and pulling method. The exposure to hazardous chemical such as hydrofluoric acid is yet another problem associated with chemical etching. Nano-grinding technique described in this thesis should provide a much better alternative to the traditional optical fabrication techniques. Nano-grinding experiments were conducted on a nano-grinding machine (NGM) specially built for this purpose. The machine incorporates state-of-the-art air-bearing spindles, piezo electric actuators, and capacitive displacement sensors with accuracy down to 2 nm. Such precise motion provided by this system is the key for the success of this technique. With such system, it was possible to produce a multitude variety of lens profiles with high profile accuracy and with surfaces of optical quality without the need for exposure to any kind of hazardous chemicals. In achieving this objective, the research was conducted on many frontiers. First, the possibility of grinding optical fibers without inducing surface and subsurface damages was investigated. Micro-indentation, nano-indentation, and nano-scratch tests were conducted to determine the critical depth of cut that can be achieved before the occurrence of surface and subsurface cracks. Nano-scratch test in particular provided a clear insight to the cracking and the chipping mechanisms that might unfold if the critical depth of cut was exceeded in an actual grinding situation. The knowledge gained from this exercise laid the ground base for the design of the NGM. Using the NGM, further experiments were carried out to determine the optimal grinding parameters for an efficient and successful grinding process. Parameters investigated include the grit size, the cutting speed, and the in-feed rates. The optimum parameters have to ensure the best endface surface quality and the same time maintain a high throughput. This study shows that based on these optimal parameters, it should be possible to produce endface microlenses of optical surface quality free surface and/or subsurface damages in less than 30 seconds with surface roughness (Ra) less than 3 nm. A novel post-grinding surface improvement techniques was also developed. The technique called loose abrasive blasting (LAB) can be used for polishing at and non-flat surfaces. Experiments were conducted on a loose abrasive blasting machine built specially for this purpose. The performance of this technique was compared with other techniques such as slurry polishing and chemical etching used for polishing of brittle materials. The results showed that while chemical etching was found unsuitable for polishing of at optical fiber endfaces, LAB outperformed slurry polishing by significant margin. After the optimal grinding conditions were established, the NGM was used for grinding of different kinds of optical fiber microlens profiles. Among the endface profiles produced were conical lenses, tapered lenses, D-shaped lenses and others. It has also been shown, in case of conical lenses for instance, that there is almost unlimited number of profiles that can be produced by simply changing the contact angle between the fiber endface and the grinding film. The effect of surface roughness on light coupling efficiency between a fiber endface and a laser diode was also investigated. Cleaved fiber endfaces as well as ground endfaces with variant degrees of surface roughness were used in this experiment. The results showed that surface roughness has significant effect on light coupling efficiency. The effect of lens eccentricity on light coupling was also investigated.
202

Mechanics of Nb-Ti superconducting composites

Guo, Zhiqiang 23 June 1994 (has links)
Mechanical behavior of Nb-Ti superconducting composites with copper matrices have been studied experimentally and theoretically. Experimental work includes extensive measurements of Cu/Nb-Ti composite system. Techniques for fine fiber testing and composite wire measurement have been developed. Experimental parameters examined in this research include geometry, hardness, Young's modulus, Poisson's ratio, yield strength and ultimate strength. Three theoretical models have been developed to study the mechanics of the Cu/Nb-Ti composite system. The influence of several design parameters on the mechanics of the Nb-Ti composites was studied and provides some insight on superconducting composite design for improvements in processing and performance. The mechanical behavior of the Cu/Nb-Ti composite system are found to be functions of geometry, composition and processing. Geometry of Nb-Ti superconducting composites is different from most engineering composites and there are two factors affecting sample geometry: the variability of fiber geometry and the placement of fibers within the composite. The strength distribution of Nb-Ti fibers is closely related to the distribution of fiber geometry and the composite strength increases as the scatter of fiber strength decreases. Heat treatment reduces the hardness of the bulk copper dramatically. The first heat treatment increases the strength and hardness of the Nb-Ti fibers, further heat treatments reduce the strength and hardness while increasing Young's modulus of the fibers. As the extent of cold work increases, the strength of Nb-Ti fibers and that of the composite wires increases. Cold work effects on the Young's modulus of the composites and the Nb-Ti fibers are not significant. For a constant global Cu/SC ratio, the lower the local Cu/SC ratio, the lower the micro-in-plane stresses. From this point of view, the fibers should be packed as close as possible to one another. For a constant local Cu/SC ratio, when the inner radius of the Nb-Ti assembly increases (the fibers are packed further from center), the macro-in-plane stresses increase. From this point of view, the fibers should be packed as close to the center of the wire as possible. For a constant geometry, the higher the difference between E[subscript f] and E[subscript m], the lower the in-plane stresses, and the higher the difference of the Poisson's ratio between the components, the higher the in-plane stresses. / Graduation date: 1995
203

Retention dynamics for small particles on cylindrical fibers

Dyer, David A. 01 January 1977 (has links)
No description available.
204

The viscosity of fiber suspensions

Blakeney, William Roy 01 January 1965 (has links)
No description available.
205

A critical study of certain phases of the structure and behavior of pulp fibers

Howells, T. Alfred (Thomas Alfred) 01 January 1937 (has links)
No description available.
206

A method for the measurement of the angle of contact formed between a liquid surface and a fiber, and the application of this and swelling data to pore diameter measurements

Foote, James Edward 01 January 1936 (has links)
No description available.
207

The effect of stress applied during drying on some of the properties of individual pulp fibers

Jentzen, Carl A. 01 January 1964 (has links)
No description available.
208

The adsorption of complex aluminum species by cellulosic fibers from dilute solutions of aluminum chloride and aluminum sulfate

Arnson, Thomas R. 06 1900 (has links)
No description available.
209

Dense spectral beam combining with volume Bragg gratings in photo-thermo-refractive glass

Andrusyak, Oleksiy G. January 2009 (has links)
Thesis (Ph.D.)--University of Central Florida, 2009. / Adviser: Leonid B. Glebov. Includes bibliographical references (p. 142-151).
210

Fiber optical parametric generation of widely tunable source: continuous-wave to sub-pricosecondregime

Zhou, Yue, 周月 January 2012 (has links)
Optical source generation has attracted significant attention recently, especially in fiber optical communications. Today there is a growing a demand for optical source generation beyond conventional telecommunication wavelength bands. However, high quality and versatile optical source is generally not available over those wavelength bands due to the lack of efficient gain medium. Thanks to fiber optical parametric amplifier (FOPA), which is based on the third order nonlinear susceptibility of optical fibers, offers ultrafast response, wide-gain bandwidth, high gain and large frequency detune from the pump, serves as a promising candidate for signal amplification over those wavelength bands. By using the corresponding fiber optical parametric oscillator (FOPO) configuration, widely tunable source from continuous-wave (CW) to sub-picosecond pulses can be potentially generated to serve different applications from communication to biomedical imaging. In this thesis, we first demonstrate an all-fiber widely-tunable picosecond FOPO using highly-nonlinear fiber (HNLF). The tuning range is as wide as 250 nm, which is higher than previous picosecond FOPOs reported in the 1550-nm region. Second, time-dispersion tuning of the FOPO is investigated with fixed pump wavelength. It is a relatively simple and economic approach, and there will be no filter induced cavity loss. We then describe using FOPO to generated nearly-transform limited sub-picosecond pulses with a 60-nm tuning range. Another FOPO with a tuning range of 440-nm with dispersion-shifted fiber (DSF) as the gain medium is proposed and demonstrated. Compared with FOPOs demonstrated using HNLF as the gain medium, the use of DSF offers two key advantages: a wider tuning range and a narrower linewidth. In addition to picosecond FOPO, CW FOPO is also of great interest in fiber optical communications and biomedical imaging. We also demonstrate an all-fiber CW single-longitudinal-mode (SLM) FOPO with tuning range covers the S and L bands. SLM oscillation with a side-mode suppression ratio greater than 43 dB is achieved, which has been extended to 1-μm region under stable operation. Apart from static tuning, dynamic wavelength tuning of the FOPO is also discussed in this thesis with a cumulative speed exceeds 4,000,000 nm/s, which is higher than previous work reported in wavelength-swept FOPOs. The high-speed swept source would be useful in biomedical imaging and sensing applications. The amplification of the sub-picosecond pulses of the FOPO output is also investigated, for the first time to our knowledge, by using a fiber optical parametric chirped pulse amplifier(FOPCPA).The totally fiber-integrated nature of the whole system allows complete self-alignment and further integration to other fiber-based systems. All these research effort will show the versatility of FOPO techniques for generating wide range of optical sources for varies applications. These schemes may be useful in generating CW and short pulse for potential optical communication and biomedical imaging in non-conventional wavelength bands. / published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy

Page generated in 0.0273 seconds