• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 40
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 136
  • 42
  • 30
  • 27
  • 25
  • 22
  • 22
  • 17
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fascinating characteristics and applications of the Fibonacci sequence /

Leonesio, Justin Michael. January 2007 (has links)
Thesis (Honors)--Liberty University Honors Program, 2007. / Includes bibliographical references. Also available through Liberty University's Digital Commons.
2

Around the Fibonacci numeration system

Edson, Marcia Ruth. Zamboni, Luca Quardo, January 2007 (has links)
Thesis (Ph. D.)--University of North Texas, May, 2007. / Title from title page display. Includes bibliographical references.
3

Fibonacciho princip v grafické analýze akcií / Harmonic Pattern Share Analysis

Kubát, Jan January 2012 (has links)
The aim of this work is to test harmonic chart patterns on europen and american stock markets. The logic of classical chart patterns is based on behavioral psychology. In the year 1997, Larry Pesavento introduced harmonic chart patterns in his book "Fibonacci Ratios with Pattern Recognition" [1]. Harmonic chart patterns contain ratios based on fibonacci principle. Fibonacci principle is not based in behavioral psychology, it is based in natural law. Harmonic patterns are the first chart patterns, that are not based in behavioral psychology. The main goal of this work is to answer two questions: Is strategy based on harmonic chart patterns more profitable that pasive portfolio strategy? Are the harmonic chart patterns more profitable than the classical chart patterns?
4

Some Properties of the Fibonacci Numbers

Willey, Wm. Riley 06 1900 (has links)
This thesis is presented as an introduction to the Fibonacci sequence of integers. It is hoped that this thesis will create in the reader more interest in this type of sequence and especially the Fibonacci sequence. It seems that this particular area of mathematics is often ignored in the classroom or touched upon far too briefly to stimulate curiosity and develop further interest in this field.
5

Composições de Fibonacci e monoides livres

Mansan, Giovane January 2015 (has links)
Nesta dissertação, estudaremos fórmulas expressando números de Fibonacci como somas sobre composições, onde a soma se estende sobre todas as composições a1; a2; ... ; ak de n1 para um k qualquer. Daremos uma explicação sistemática de tais fórmulas usando monoides livres. O número de composições de nem partes 1 e 2 e o (n+1)- ésimo n umero de Fibonacci Fn+1, e essas composições estão associadas a um monoide livre. Veremos algumas fórmulas surgindo a partir de submonoides livres desse monoide livre. Alternativamente, e sempre que possível, tentaremos interpretar combinatorialmente os resultados tratados aqui. / In this dissertation, we study formulas expressing Fibonacci numbers as sums over compositions, where the sums are over all compositions a1; a2; ..., ak of n1 for any k. We will give a systematic explanation of such formulas using free monoids. The number of compositions of n with parts 1 and 2 is the (n + 1)th Fibonacci number Fn+1, and these compositions form a free monoid. We will see some formulas coming from free submonoids of this free monoid. Alternatively, and whenever possible, we try to interpret combinatorially such results.
6

Recurrence relations in finite nilpotent groups

Aydin, Hueseyin January 1991 (has links)
No description available.
7

Composições de Fibonacci e monoides livres

Mansan, Giovane January 2015 (has links)
Nesta dissertação, estudaremos fórmulas expressando números de Fibonacci como somas sobre composições, onde a soma se estende sobre todas as composições a1; a2; ... ; ak de n1 para um k qualquer. Daremos uma explicação sistemática de tais fórmulas usando monoides livres. O número de composições de nem partes 1 e 2 e o (n+1)- ésimo n umero de Fibonacci Fn+1, e essas composições estão associadas a um monoide livre. Veremos algumas fórmulas surgindo a partir de submonoides livres desse monoide livre. Alternativamente, e sempre que possível, tentaremos interpretar combinatorialmente os resultados tratados aqui. / In this dissertation, we study formulas expressing Fibonacci numbers as sums over compositions, where the sums are over all compositions a1; a2; ..., ak of n1 for any k. We will give a systematic explanation of such formulas using free monoids. The number of compositions of n with parts 1 and 2 is the (n + 1)th Fibonacci number Fn+1, and these compositions form a free monoid. We will see some formulas coming from free submonoids of this free monoid. Alternatively, and whenever possible, we try to interpret combinatorially such results.
8

Composições de Fibonacci e monoides livres

Mansan, Giovane January 2015 (has links)
Nesta dissertação, estudaremos fórmulas expressando números de Fibonacci como somas sobre composições, onde a soma se estende sobre todas as composições a1; a2; ... ; ak de n1 para um k qualquer. Daremos uma explicação sistemática de tais fórmulas usando monoides livres. O número de composições de nem partes 1 e 2 e o (n+1)- ésimo n umero de Fibonacci Fn+1, e essas composições estão associadas a um monoide livre. Veremos algumas fórmulas surgindo a partir de submonoides livres desse monoide livre. Alternativamente, e sempre que possível, tentaremos interpretar combinatorialmente os resultados tratados aqui. / In this dissertation, we study formulas expressing Fibonacci numbers as sums over compositions, where the sums are over all compositions a1; a2; ..., ak of n1 for any k. We will give a systematic explanation of such formulas using free monoids. The number of compositions of n with parts 1 and 2 is the (n + 1)th Fibonacci number Fn+1, and these compositions form a free monoid. We will see some formulas coming from free submonoids of this free monoid. Alternatively, and whenever possible, we try to interpret combinatorially such results.
9

Inequalities with small coefficients and the reformulation of integer programmes

McDonnell, Francis James January 1998 (has links)
Pure- and mixed-integer programmes can often be solved more quickly if the constraints are reformulated first. In this thesis five main themes related to reformulating these programmes are explored.
10

NUMBER SYSTEM: VARIATIONS IN WEAVING

Peters, Martine Francis 28 October 2010 (has links)
No description available.

Page generated in 0.0551 seconds