• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 40
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 136
  • 42
  • 30
  • 27
  • 25
  • 22
  • 22
  • 17
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Funções de Fibonacci: um estudo sobre a razão áurea e a sequência de Fibonacci

Santos, Fabio Honorato dos 08 February 2018 (has links)
Due to the system does not recognize equations and formulas the resumo and abstract can be found in the PDF file. / Devido ao sistema não reconhecer equações e fórmulas o resumo e abstract encontra-se no arquivo em PDF.
12

A razão áurea e a sequência de Fibonacci / The golden ratio and the Fibonacci sequence

Belini, Marcelo Manechine 16 September 2015 (has links)
O presente trabalho irá abordar dois temas matemáticos de diferentes contextos históricos mas que apresentam uma relação intrínseca com o número Φ, mais conhecido como número de ouro. Partiremos de uma breve descrição dos conjuntos numéricos N, Z, Q e algumas propriedades dos números racionais para, em seguida, deduzirmos os números irracionais Π e, enfim, os números reais R. Na sequência vamos trabalhar com dois problemas muito antigos: o primeiro aparece na coletânea de livros Os Elementos do matemático grego Euclides, 300 anos a.C., e diz respeito à divisão de um segmento em média e extrema razão e, o segundo, foi publicado no livro Liber Abaci do matemático italiano Leonardo Fibonacci, século XIII, e trata da reprodução de coelhos e a sequência a qual ela origina. Veremos que o número de ouro aparece em ambos os problemas e vem ao longo dos séculos desencadeando muitas teorias que tratam de padrões e beleza. Abordaremos situações do passado e do presente que fazem uso desses padrões, além de fenômenos da natureza. Também apresentaremos um conjunto de atividades para orientar professores do ensino médio de como trabalhar, numa perspectiva interdisciplinar com vários conteúdos da matemática, e o número Φ. / This work addresses two mathematical topics from different historical contexts but that have an intrinsic relationship with the number Φ, better known as the golden number. We start with a brief description of the numerical sets N, Z, Q and some properties of rational numbers, and then deduct the set of irrational numbers π and, finally, the set of real numbers R. In the sequence we work with two very old problems: the first appears in the collection of books The elements of the Greek mathematician Euclid, 300 years BC, and concerns the division of a segment in extreme and mean ratio, and the second, published in the book Liber Abaci of the Italian mathematician Leonardo Fibonacci, in the thirteenth century, and deals with the breeding of rabbits and the sequence which it originates. We will see that the golden number appears on both problems and has over the centuries triggering many theories dealing with standards and beauty. We discuss situations of past and present that makes use of these standards, as well as natural phenomena. We also present a set of activities to guide middle school teachers on how to work in an interdisciplinary perspective with various mathematical content, and the number Φ.
13

A razão áurea e a sequência de Fibonacci / The golden ratio and the Fibonacci sequence

Marcelo Manechine Belini 16 September 2015 (has links)
O presente trabalho irá abordar dois temas matemáticos de diferentes contextos históricos mas que apresentam uma relação intrínseca com o número Φ, mais conhecido como número de ouro. Partiremos de uma breve descrição dos conjuntos numéricos N, Z, Q e algumas propriedades dos números racionais para, em seguida, deduzirmos os números irracionais Π e, enfim, os números reais R. Na sequência vamos trabalhar com dois problemas muito antigos: o primeiro aparece na coletânea de livros Os Elementos do matemático grego Euclides, 300 anos a.C., e diz respeito à divisão de um segmento em média e extrema razão e, o segundo, foi publicado no livro Liber Abaci do matemático italiano Leonardo Fibonacci, século XIII, e trata da reprodução de coelhos e a sequência a qual ela origina. Veremos que o número de ouro aparece em ambos os problemas e vem ao longo dos séculos desencadeando muitas teorias que tratam de padrões e beleza. Abordaremos situações do passado e do presente que fazem uso desses padrões, além de fenômenos da natureza. Também apresentaremos um conjunto de atividades para orientar professores do ensino médio de como trabalhar, numa perspectiva interdisciplinar com vários conteúdos da matemática, e o número Φ. / This work addresses two mathematical topics from different historical contexts but that have an intrinsic relationship with the number Φ, better known as the golden number. We start with a brief description of the numerical sets N, Z, Q and some properties of rational numbers, and then deduct the set of irrational numbers π and, finally, the set of real numbers R. In the sequence we work with two very old problems: the first appears in the collection of books The elements of the Greek mathematician Euclid, 300 years BC, and concerns the division of a segment in extreme and mean ratio, and the second, published in the book Liber Abaci of the Italian mathematician Leonardo Fibonacci, in the thirteenth century, and deals with the breeding of rabbits and the sequence which it originates. We will see that the golden number appears on both problems and has over the centuries triggering many theories dealing with standards and beauty. We discuss situations of past and present that makes use of these standards, as well as natural phenomena. We also present a set of activities to guide middle school teachers on how to work in an interdisciplinary perspective with various mathematical content, and the number Φ.
14

Combinatorial Proofs of Congruences

Rouse, Jeremy 01 May 2003 (has links)
Combinatorial techniques can frequently provide satisfying “explanations” of various mathematical phenomena. In this thesis, we seek to explain a number of well known number theoretic congruences using combinatorial methods. Many of the results we prove involve the Fibonacci sequence and its generalizations.
15

Γενικευμένα πολυώνυμα Fibonacci και κατανομές πιθανότητας

Φιλίππου, Γιώργος 06 May 2015 (has links)
Η τόσο συχνή εμφάνιση της ακολουθίας Fibonacci στη φύση καθώς και ο συσχετισμός της με πλείστους τομείς της μαθηματικής επιστήμης έδωσε αφορμή να ενταθεί η έρευνα στην περιοχή αυτή. Και τούτο ιδιαίτερα τις τελευταίες δύο δεκαετίες. Τα πολυώνυμα Fibonacci k-τάξης αποτελούν μία από τις ευρύτερες γενικεύσεις της ακολουθίας Fibonacci. Η μελέτη των πολυωνύμων αυτών και η σύνδεσή τους με την πιθανότητα είναι το κύριο αντικείμενο της διατριβής αυτής. Η κατανομή πιθανότητας της τ. μ. Χk, όπου Xk το πλήθος των επαναλήψεων σε ένα πείραμα δοκιμών Bernoulli ώσπου να προκύψουν k διαδοχικές επιτυχίες, έχει ονομασθεί "κατανομή πιθανότητας Fibonacci". Η σχέση της κατανομής Fibonacci με τα πολυώνυμα Fibonacci οδήγησε στις γενικευμένες κατανομές πιθανότητας που αποτέλεσε το δεύτερο άξονα της μελέτης αυτής. / The fact that Fibonacci sequences appear so frequently in nature together with their interrelationship with almost any branch of mathematics, has resulted in an intesive research in this area particularly during the last two decades. One of the most wide extensions of the Fibonacci sequence is provided by the Fibonacci polynomials of order k. The study of these polynomials and thier relation with probability is the main part of this dissertation. The probability distribution of the r.v. Xk, where Xk denotes the number of trials until the occurrence of the kth consecutive success in indipendent trials, thas been called "Fibonacci Probability Distribution". The relation between the Fibonacci Distribution and the Fibonacci polynomials led to generalized probability distributions (Geometric, Negative binomial, Poisson and Compound poisson) which consists the second major part of this study.
16

Explorando a matemática do número Ф, o número de ouro

Santos, Gilberto Vieira dos [UNESP] 15 August 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:02Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-08-15Bitstream added on 2014-06-13T18:47:22Z : No. of bitstreams: 1 santos_gv_me_rcla.pdf: 705173 bytes, checksum: 8a6ce4d002790bed3a8a649c1bd1cb3e (MD5) / Nesta pesquisa, exploramos um número especial para aqueles que admiram a Matemática. Ele é chamado de número de ouro, proporção áurea ou número Ф. O primeiro registro escrito desse número na história da matemática aparece no livro Os Elementos VI , de Euclides (século VI a.C). Originalmente, o problema era dividir um segmento em extrema e média razão. Desde então, uma série de outros problemas e resultados com este número foram aparecendo. Demos atenção especial para a seqüência de Fibonacci, fascinante porque seus elementos são apenas números inteiros, mas produzem o número irracional Ф. Mostramos que alguns resultados obtidos com Ф são propriedades características de certos números do anel dos inteiros quadráticos O(m), conjunto ao qual ele pertence / This research we explored a special number for those who admire Mathematics. It is called the gold number, golden ratio or number Ф. The first record of its occurrence in the history of mathematics appears in the Euclid’s Elements - Book VI . Originally, the problem was to divide a segment in extreme and average ratio. Since then, a lot of number of other problems and studies with this number were developed. We gave special attention to the Fibonacci sequence, fascinating because its elements are just integer numbers, but produce the irrational number Ф. We demonstrate that many results obtained with Ф are characteristic properties of some numbers of quadratic ring of integers O(m), set to which ф belongs
17

Explorando a matemática do número Ф, o número de ouro /

Santos, Gilberto Vieira dos. January 2013 (has links)
Orientador: Carina Alves / Banca: Marta Cilene Gadotti / Banca: Antonio Aparecido de Andrade / O PROFMAT - Programa de Mestrado Profissional em Matemática em Rede Nacional é coordenado pela Sociedade Brasileira de Matemática e realizado por uma rede de Instituições de Ensino Superior. / Resumo: Nesta pesquisa, exploramos um número especial para aqueles que admiram a Matemática. Ele é chamado de número de ouro, proporção áurea ou número Ф. O primeiro registro escrito desse número na história da matemática aparece no livro Os Elementos VI , de Euclides (século VI a.C). Originalmente, o problema era dividir um segmento em extrema e média razão. Desde então, uma série de outros problemas e resultados com este número foram aparecendo. Demos atenção especial para a seqüência de Fibonacci, fascinante porque seus elementos são apenas números inteiros, mas produzem o número irracional Ф. Mostramos que alguns resultados obtidos com Ф são propriedades características de certos números do anel dos inteiros quadráticos O(m), conjunto ao qual ele pertence / Abstract: This research we explored a special number for those who admire Mathematics. It is called the gold number, golden ratio or number Ф. The first record of its occurrence in the history of mathematics appears in the Euclid's Elements - Book VI . Originally, the problem was to divide a segment in extreme and average ratio. Since then, a lot of number of other problems and studies with this number were developed. We gave special attention to the Fibonacci sequence, fascinating because its elements are just integer numbers, but produce the irrational number Ф. We demonstrate that many results obtained with Ф are characteristic properties of some numbers of quadratic ring of integers O(m), set to which ф belongs / Mestre
18

Investiční analýza s využitím Fibonacciho metody / Investment Analysis Using Fibonacci´s Method

Knupp, Aleš January 2011 (has links)
This diploma thesis examines an investment analysis of pairs of currencies quoted relative to American Dollars, British Pounds and Euros. Oil is introduced into the analysis to be representative of comodities in general. The study presented here is based on Fibonacci's analytic tools. These tools are introduced to the reader from basic concepts including off-market coherences to more advanced topics such as real market situations. The reader is lead through each concept by example and as the reader becomes more familiar and able to handle the basic concepts more difficult scenarios are covered including combinational analysis of the market with accesible instruments on a price axis. From this basis, we focus on market evolution with using abstract approaches and finally time aspects of a price cycling will be presented. The conclusion is followed by a complex example using all the elements previously discussed for an actual set of market data featuring the currency pair EURUSD.
19

Dream of a Thousand Keys: A Concerto for Piano and Orchestra

Choi, Da Jeong 05 1900 (has links)
Dream of a Thousand Keys is a concerto for piano and orchestra, which consists of four movements presenting multiple dimensional meanings as suggested by the word "key." I trace the derivation of Korean traditional rhythmic cycles and numerical sequences, such as the Fibonacci series, that are used throughout the work, and explore the significant role of space between the soloist and piano that are emphasized in a theatrical aspect of the composition. The essay addresses the question of musical contrasts, similarities, and metamorphosis. Lastly, I cover terms and concepts of significant 21st-century compositional techniques that come into play in the analysis of this work.
20

A reinterpretation, and new demonstrations of, the Borel Normal Number Theorem

Rockwell, Daniel Luke 09 September 2011 (has links)
The notion of a normal number and the Normal Number Theorem date back over 100 years. Émile Borel first stated his Normal Number Theorem in 1909. Despite their seemingly basic nature, normal numbers are still engaging many mathematicians to this day. In this paper, we provide a reinterpretation of the concept of a normal number. This leads to a new proof of Borel's classic Normal Number Theorem, and also a construction of a set that contains all absolutely normal numbers. We are also able to use the reinterpretation to apply the same definition for a normal number to any point in a symbolic dynamical system. We then provide a proof that the Fibonacci system has all of its points being normal, with respect to our new definition. / Graduation date: 2012

Page generated in 0.0278 seconds