• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 5
  • 5
  • 5
  • 4
  • Tagged with
  • 17
  • 17
  • 11
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Explorando a matemática do número Ф, o número de ouro

Santos, Gilberto Vieira dos [UNESP] 15 August 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:02Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-08-15Bitstream added on 2014-06-13T18:47:22Z : No. of bitstreams: 1 santos_gv_me_rcla.pdf: 705173 bytes, checksum: 8a6ce4d002790bed3a8a649c1bd1cb3e (MD5) / Nesta pesquisa, exploramos um número especial para aqueles que admiram a Matemática. Ele é chamado de número de ouro, proporção áurea ou número Ф. O primeiro registro escrito desse número na história da matemática aparece no livro Os Elementos VI , de Euclides (século VI a.C). Originalmente, o problema era dividir um segmento em extrema e média razão. Desde então, uma série de outros problemas e resultados com este número foram aparecendo. Demos atenção especial para a seqüência de Fibonacci, fascinante porque seus elementos são apenas números inteiros, mas produzem o número irracional Ф. Mostramos que alguns resultados obtidos com Ф são propriedades características de certos números do anel dos inteiros quadráticos O(m), conjunto ao qual ele pertence / This research we explored a special number for those who admire Mathematics. It is called the gold number, golden ratio or number Ф. The first record of its occurrence in the history of mathematics appears in the Euclid’s Elements - Book VI . Originally, the problem was to divide a segment in extreme and average ratio. Since then, a lot of number of other problems and studies with this number were developed. We gave special attention to the Fibonacci sequence, fascinating because its elements are just integer numbers, but produce the irrational number Ф. We demonstrate that many results obtained with Ф are characteristic properties of some numbers of quadratic ring of integers O(m), set to which ф belongs
2

Explorando a matemática do número Ф, o número de ouro /

Santos, Gilberto Vieira dos. January 2013 (has links)
Orientador: Carina Alves / Banca: Marta Cilene Gadotti / Banca: Antonio Aparecido de Andrade / O PROFMAT - Programa de Mestrado Profissional em Matemática em Rede Nacional é coordenado pela Sociedade Brasileira de Matemática e realizado por uma rede de Instituições de Ensino Superior. / Resumo: Nesta pesquisa, exploramos um número especial para aqueles que admiram a Matemática. Ele é chamado de número de ouro, proporção áurea ou número Ф. O primeiro registro escrito desse número na história da matemática aparece no livro Os Elementos VI , de Euclides (século VI a.C). Originalmente, o problema era dividir um segmento em extrema e média razão. Desde então, uma série de outros problemas e resultados com este número foram aparecendo. Demos atenção especial para a seqüência de Fibonacci, fascinante porque seus elementos são apenas números inteiros, mas produzem o número irracional Ф. Mostramos que alguns resultados obtidos com Ф são propriedades características de certos números do anel dos inteiros quadráticos O(m), conjunto ao qual ele pertence / Abstract: This research we explored a special number for those who admire Mathematics. It is called the gold number, golden ratio or number Ф. The first record of its occurrence in the history of mathematics appears in the Euclid's Elements - Book VI . Originally, the problem was to divide a segment in extreme and average ratio. Since then, a lot of number of other problems and studies with this number were developed. We gave special attention to the Fibonacci sequence, fascinating because its elements are just integer numbers, but produce the irrational number Ф. We demonstrate that many results obtained with Ф are characteristic properties of some numbers of quadratic ring of integers O(m), set to which ф belongs / Mestre
3

Ordem de aparição na sequência de Fibonacci : um problema sobre divisibilidade

Costa, Gustavo Candeia 03 July 2015 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, Programa de Mestrado Profissional em Matemática em Rede Nacional, 2015. / Submitted by Fernanda Alves Mignot (fernandamignot@hotmail.com) on 2015-11-05T19:12:02Z No. of bitstreams: 1 2015_GustavoCandeiaCosta.pdf: 843402 bytes, checksum: dd61c70734d3156b82f3a83934613a57 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2015-11-05T19:33:12Z (GMT) No. of bitstreams: 1 2015_GustavoCandeiaCosta.pdf: 843402 bytes, checksum: dd61c70734d3156b82f3a83934613a57 (MD5) / Made available in DSpace on 2015-11-05T19:33:12Z (GMT). No. of bitstreams: 1 2015_GustavoCandeiaCosta.pdf: 843402 bytes, checksum: dd61c70734d3156b82f3a83934613a57 (MD5) / Seja (Fn)n≥0 a sequência de Fibonacci e z(n) a ordem de aparição nessa sequência definida como o menor k Є N tal que n divide Fk. Nesse trabalho, discutiremos algumas propriedades dessa função. O principal objetivo é provar que existem infinitas soluções para a equação z(n) = z(n + 2) e exibir fórmulas fechadas para z(Fm ± 1). Mas, antes disso, detalharemos propriedades dos números de Fibonacci e números de Lucas. ______________________________________________________________________________________________ ABSTRACT / Let (Fn)n≥0 be the Fibonacci sequence and let z(n) be the order of appearance in this sequence which is defined as the smallest k Є N such that n divides Fk. In this work, we shall discuss some properties of this function. The main goal is to prove the existence of infinitely many solutions to the equation z(n) = z(n + 2) as well as to exhibit closed formulas for z z(Fm ± 1). At first, we shall describe the properties of Fibonacci and Lucas numbers.
4

Recorrências - problemas e aplicações

Pereira, Marcus Vinícius 02 June 2014 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2014 / Submitted by Ana Cristina Barbosa da Silva (annabds@hotmail.com) on 2014-12-05T11:31:19Z No. of bitstreams: 1 2014_MarcusViniciusPereira.pdf: 1495143 bytes, checksum: 847eb280919f4cd43cfea39b1e5ac3ce (MD5) / Approved for entry into archive by Guimaraes Jacqueline(jacqueline.guimaraes@bce.unb.br) on 2014-12-05T14:32:22Z (GMT) No. of bitstreams: 1 2014_MarcusViniciusPereira.pdf: 1495143 bytes, checksum: 847eb280919f4cd43cfea39b1e5ac3ce (MD5) / Made available in DSpace on 2014-12-05T14:32:22Z (GMT). No. of bitstreams: 1 2014_MarcusViniciusPereira.pdf: 1495143 bytes, checksum: 847eb280919f4cd43cfea39b1e5ac3ce (MD5) / O objetivo deste texto é realizar um estudo sobre sequências numéricas mostrando exemplos de sequências não comumente estudadas no ensino médio inclusive as decorrentes da solução de determinados problemas. Abordamos também as relações de recorrência, apresentando alguns resultados sobre a resolução de tais recorrências e sugerindo atividades de investigação matemática em sala de aula. _________________________________________________________________________________ ABSTRACT / The aim of this paper is to conduct a study on numerical sequences showing ex-amples of sequences unusually studied in high school including those resulting from the solution of certain problems. We also analyze the recurrence relations, present some re-sults about solving such recurrences and suggest mathematical research activities in the classroom.
5

O número de ouro no ensino da matemática na educação básica

Silva, Luiz Henrique Morais da [UNESP] 23 September 2013 (has links) (PDF)
Made available in DSpace on 2014-12-02T11:16:50Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-09-23Bitstream added on 2014-12-02T11:21:24Z : No. of bitstreams: 1 000793723.pdf: 894587 bytes, checksum: d84e35b5ea20299d24690c0512f3dab7 (MD5) / O objetivo deste trabalho é trazer atividades (teóricas e práticas), em torno de um tema único o Número de Ouro, a ser explorado em diversos conteúdos já existentes no atual currículo de Matemática. A partir deste tema, introduzir a ideia de Razão Extrema e Média e, logo após, trazer o conceito de Razão Áurea e, assim, induzir os alunos a obter o Número de Ouro, entender suas propriedades matemáticas e suas aplicações em torno do Triângulo Áureo e Retângulo Áureo / The goal of this work is to bring new activities (theoretical and practical), around a single subject (The Golden Number), to be exploited in several existing content in the current mathematical curriculum at school. From this subject, we introduce the idea of extreme and mean ratio, as well the concept of the Golden Ratio, so, we expect that students can be able to get the Golden Number and understand their mathematical properties and their applications (related to Golden Triangle and Golden Rectangle)
6

Argumentos combinatórios para identidades envolvendo números binomiais, de Fibonacci e de Lucas

Córes, Fernando Cunha 07 July 2014 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2014. / Submitted by Ana Cristina Barbosa da Silva (annabds@hotmail.com) on 2015-06-24T16:31:02Z No. of bitstreams: 1 2014_FernandoCunhaCores.pdf: 2642081 bytes, checksum: 54b5ec3452b974fcd5dd77cea0ee37fe (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2015-06-26T13:47:23Z (GMT) No. of bitstreams: 1 2014_FernandoCunhaCores.pdf: 2642081 bytes, checksum: 54b5ec3452b974fcd5dd77cea0ee37fe (MD5) / Made available in DSpace on 2015-06-26T13:47:23Z (GMT). No. of bitstreams: 1 2014_FernandoCunhaCores.pdf: 2642081 bytes, checksum: 54b5ec3452b974fcd5dd77cea0ee37fe (MD5) / Considere os números de Fibonacci (Fn), os números de Lucas (Ln) e os números binomiais (C(n; k)), os fenômenos que por eles são enumerados e as principais identidades envolvendo esses números. Seguindo o trabalho de Arthur Benjamin e Jennifer Quinn [1], vamos demonstrar tais identidades mostrando que podemos contar o mesmo fenômeno de duas formas diferentes. Inicialmente vamos estudar os números binomiais, mais comuns no Ensino Médio e que estão no contexto da Combinatória, considerada pela maioria dos alunos e professores como o assunto mais difícil de entender e ensinar naquele segmento de ensino. Em seguida faremos uma abordagem combinatória de algumas identidades envolvendo números de Fibonacci e de Lucas através de um estudo das coberturas de um tabuleiro 1 x n, das palavras binárias e das composições de um inteiro positivo n. Sobre as composições, basearemos nosso trabalho no estudo feito por Hoggatt [7] para fazer as demonstrações de algumas das identidades propostas. Apresentaremos novas identidades de Fibonacci e Lucas. Finalmente faremos uma proposta de sequência didática para ser aplicada na educação básica como motivadora para o estudo da Combinatória e dos números de Fibonacci. ______________________________________________________________________________________________ ABSTRACT / Consider Fibonacci numbers (Fn), Lucas numbers (Ln) and binomial numbers (C(n, k)) and the several identities involving these numbers. Following the work of Arthur Benjamin and Jennifer Quinn [1], we will demonstrate some identities by showing that it is possible to count the same situation in two different ways. Firstly, we will study binomial numbers (which are more common in high school) which belongs to the context of Combinatorics, considered by most students and teachers as the most dificult subject to understand and teach. Then we will work on combinatorial approaches of some identities involving Fibonacci and Lucas numbers by studying coverings of a 1 x n board, binary words, and compositions of a positive integer. About compositions, our work will be based on the study by Hoggatt [7] to demonstrate some of the proposed identities. Also, shall present new identities for Fibonacci and Lucas numbers. Finally, we shall make a proposal for a teaching sequence to be applied in basic education as a motivator for the study of Combinatorics and Fibonacci numbers.
7

Equações diofantinas envolvendo sequências de fibonacci generalizadas

Vieira, Vinicius Facó Ventura 24 February 2016 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2016. / Submitted by Camila Duarte (camiladias@bce.unb.br) on 2016-07-18T17:45:52Z No. of bitstreams: 1 2016_ViniciusFacoVenturaVieira.pdf: 462806 bytes, checksum: 2c60302fed84e4f84a0309ec9be8e3fb (MD5) / Approved for entry into archive by Patrícia Nunes da Silva(patricia@bce.unb.br) on 2017-02-19T19:50:15Z (GMT) No. of bitstreams: 1 2016_ViniciusFacoVenturaVieira.pdf: 462806 bytes, checksum: 2c60302fed84e4f84a0309ec9be8e3fb (MD5) / Made available in DSpace on 2017-02-19T19:50:15Z (GMT). No. of bitstreams: 1 2016_ViniciusFacoVenturaVieira.pdf: 462806 bytes, checksum: 2c60302fed84e4f84a0309ec9be8e3fb (MD5) / A famosa e amplamente estudada sequência de Fibonacci é determinada pela recorrênciaFn= Fn-1 + Fn-2, onde F0 = 0 e F1 = 1. Podemos estender essa sequência para sequências recorrentes de ordem maior. Logo, para k ≥ 2 e n ≥ −(k − 2), sejaF(k)n = F(k)n-1 + ∙∙∙ + F(k)n-k, onde F(k)-(k-2) = ∙∙∙ = F(k)-1 = F(k)0 = 0 e F(k)1 = 1. Vamos estudar algumas equações Diofantinasenvolvendo tais sequências. Num primeiro momento, lembramos que um número perfeito é um natural que é soma de seus divisores próprios. Então, vamos aplicar formas lineares em logaritmo para achar números perfeitos pares em sequências de Fibonacci generalizadas. Em outras palavras, vamos estudar a equaçãoF(k)n = 2p-1(2p-1). Em outro problema, vamos estudar a valorização 2−ádica de F(k)n quando k = 4, a fim de procurar fatoriais nessa sequência, ou seja, vamos estudar a equaçãoQn = m!. Também, vamos usar técnicas parecidas para resolver um caso particular da equação de Brocard-Ramanujan, n2 = m! + 1, quando o inteiro né um número da sequência mencionada previamente. / The famous and widely studied Fibonacci sequence is determined by there currence Fn= Fn-1 + Fn-2, where F0 = 0 and F1 = 1. We can extend this sequence for higher order recurrences. So, for k ≥ 2 and n ≥ −(k − 2), let F(k)n = F(k)n-1 + ∙∙∙ + F(k)n-k, where F(k)-(k-2) = ∙∙∙ = F(k)-1 = F(k)0 = 0 and F(k)1 = 1.We shall study some Diophantine equations involving such sequences. First, were call that a perfect number is a natural number which equals the sum of all its proper divisors. Then, we shall apply linear forms in logarithms to find even perfect numbers in genereralized Fibonacci sequences. In other words, we shall study the Diophantine equation F(k)n = 2p-1(2p-1).In another problem, we shall study the 2− adic valuation ofF(k)n, when k = 4, in order to find factorials in that sequence, i.e., we shall study the equation Qn= m!. Also, we shall use similar techniques to solve a particular case of the Brocard-Ramanujan equation, n2 = m! + 1, when the integern is a number of the previously mentioned sequence.
8

Recorrências : uma abordagem sobre sequências recursivas para aplicações no ensino médio

Silva, Israel Carley da 07 July 2015 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, Programa de Mestrado Profissional em Matemática em Rede Nacional, 2015. / Submitted by Guimaraes Jacqueline (jacqueline.guimaraes@bce.unb.br) on 2015-12-02T11:17:51Z No. of bitstreams: 1 2015_IsraelCarleyDaSilva.pdf: 1686684 bytes, checksum: 86470a9008d3d16525e6ef6b8c88f892 (MD5) / Approved for entry into archive by Marília Freitas(marilia@bce.unb.br) on 2016-01-26T11:54:30Z (GMT) No. of bitstreams: 1 2015_IsraelCarleyDaSilva.pdf: 1686684 bytes, checksum: 86470a9008d3d16525e6ef6b8c88f892 (MD5) / Made available in DSpace on 2016-01-26T11:54:30Z (GMT). No. of bitstreams: 1 2015_IsraelCarleyDaSilva.pdf: 1686684 bytes, checksum: 86470a9008d3d16525e6ef6b8c88f892 (MD5) / Neste trabalho apresentamos uma abordagem sobre sequências recursivas, ou simplesmente recorrências. Discorremos sobre recorrências lineares, principalmente as de primeira e segunda ordem, estudando soluções e apresentando propriedades e fazendo paralelos com algumas sequências comuns ao cotidiano do estudante de Matemática. Apresentamos também, casos clássicos desse tipo de sequências como os números de Fibonacci e de Lucas; os números figurados: poligonais e piramidais; e ainda, aplicações em áreas como a Combinatória e Matemática Financeira. No trabalho ainda abordamos uma proposta de exercícios a alunos do Ensino Médio. Relatamos a experiência de atividades em sala de aula, as dificuldades encontradas, resultados apresentados, bem como os relatos das impressões que os alunos tiveram ao estudar esse tema. ______________________________________________________________________________________________ ABSTRACT / We present in this paper an approach to recursive sequences, or simply recurrences. Wediscuss linear recurrences, especially the first and second order, studying solutions and presentingproperties and making parallels with some common sequences to the mathematicsstudent daily. We also present, classics examples of such sequences as Fibonacci number sand Lucas numbers, the figured numbers: polygonal and pyramidal, and also applications in areas as Combinatory and Mathematical Finance. At work even we approach a proposed exercises to high school students. We report the activities of experience in the classroom, the difficulties encountered, the results, as wellas the reports of the impressions that the students had to study this subject.
9

O número de ouro no ensino da matemática na educação básica /

Silva, Luiz Henrique Morais da. January 2013 (has links)
Orientador: Vanderlei Minori Horita / Banca: Parham Salehyan / Banca: Márcio de Jesus Soares / Resumo: O objetivo deste trabalho é trazer atividades (teóricas e práticas), em torno de um tema único o Número de Ouro, a ser explorado em diversos conteúdos já existentes no atual currículo de Matemática. A partir deste tema, introduzir a ideia de Razão Extrema e Média e, logo após, trazer o conceito de Razão Áurea e, assim, induzir os alunos a obter o Número de Ouro, entender suas propriedades matemáticas e suas aplicações em torno do Triângulo Áureo e Retângulo Áureo / Abstract: The goal of this work is to bring new activities (theoretical and practical), around a single subject (The Golden Number), to be exploited in several existing content in the current mathematical curriculum at school. From this subject, we introduce the idea of extreme and mean ratio, as well the concept of the Golden Ratio, so, we expect that students can be able to get the Golden Number and understand their mathematical properties and their applications (related to Golden Triangle and Golden Rectangle) / Mestre
10

Números de Fibonacci e números de Lucas / Fibonacci numbers and Lucas numbers

Silva, Bruno Astrolino e 08 December 2016 (has links)
Neste trabalho, exploramos os números de Fibonacci e de Lucas. A maioria dos resultados históricos sobre esses números são apresentados e provados. Ao longo do texto, um grande número de identidades a respeito dos números de Fibonacci e de Lucas são mostradas válidas para todos os inteiros. Sequências generalizadas de Fibonacci, a relação entre os números de Fibonacci e de Lucas com as raízes da equação x2 -x -1 = 0 e a conexão entre os números de Fibonacci e de Lucas com uma classe de matrizes em M2(R) são também exploradas. / In this work we explore the Fibonacci and Lucas numbers. The majority of the historical results are stated and proved. Along the text several identities concerning Fibonacci and Lucas numbers are shown valid for all integers. Generalized Fibonacci sequences, the relation between Fibonacci and Lucas numbers with the roots of the equation x2 -x -1 = 0 and the connection between Fibonacci and Lucas numbers with a class of matrices in M2(R) are also explored.

Page generated in 0.0765 seconds