Spelling suggestions: "subject:"lucas numbers"" "subject:"yucas numbers""
1 |
Extensions in the theory of Lucas and Lehmer pseudoprimesLoveless, Andrew David, January 2005 (has links) (PDF)
Thesis (Ph.D.)--Washington State University. / Includes bibliographical references.
|
2 |
Números de Fibonacci e números de Lucas / Fibonacci numbers and Lucas numbersSilva, Bruno Astrolino e 08 December 2016 (has links)
Neste trabalho, exploramos os números de Fibonacci e de Lucas. A maioria dos resultados históricos sobre esses números são apresentados e provados. Ao longo do texto, um grande número de identidades a respeito dos números de Fibonacci e de Lucas são mostradas válidas para todos os inteiros. Sequências generalizadas de Fibonacci, a relação entre os números de Fibonacci e de Lucas com as raízes da equação x2 -x -1 = 0 e a conexão entre os números de Fibonacci e de Lucas com uma classe de matrizes em M2(R) são também exploradas. / In this work we explore the Fibonacci and Lucas numbers. The majority of the historical results are stated and proved. Along the text several identities concerning Fibonacci and Lucas numbers are shown valid for all integers. Generalized Fibonacci sequences, the relation between Fibonacci and Lucas numbers with the roots of the equation x2 -x -1 = 0 and the connection between Fibonacci and Lucas numbers with a class of matrices in M2(R) are also explored.
|
3 |
A Combinatorial Approach to $r$-Fibonacci NumbersHeberle, Curtis 31 May 2012 (has links)
In this paper we explore generalized “$r$-Fibonacci Numbers” using a combinatorial “tiling” interpretation. This approach allows us to provide simple, intuitive proofs to several identities involving $r$-Fibonacci Numbers presented by F.T. Howard and Curtis Cooper in the August, 2011, issue of the Fibonacci Quarterly. We also explore a connection between the generalized Fibonacci numbers and a generalized form of binomial coefficients.
|
4 |
Fibonacci VectorsSalter, Ena 20 July 2005 (has links)
By the n-th Fibonacci (respectively Lucas) vector of length m, we mean the vector whose components are the n-th through (n+m-1)-st Fibonacci (respectively Lucas) numbers. For arbitrary m, we express the dot product of any two Fibonacci vectors, any two Lucas vectors, and any Fibonacci vector and any Lucas vector in terms of the Fibonacci and Lucas numbers. We use these formulas to deduce a number of identities involving the Fibonacci and Lucas numbers.
|
5 |
Números de Fibonacci e números de Lucas / Fibonacci numbers and Lucas numbersBruno Astrolino e Silva 08 December 2016 (has links)
Neste trabalho, exploramos os números de Fibonacci e de Lucas. A maioria dos resultados históricos sobre esses números são apresentados e provados. Ao longo do texto, um grande número de identidades a respeito dos números de Fibonacci e de Lucas são mostradas válidas para todos os inteiros. Sequências generalizadas de Fibonacci, a relação entre os números de Fibonacci e de Lucas com as raízes da equação x2 -x -1 = 0 e a conexão entre os números de Fibonacci e de Lucas com uma classe de matrizes em M2(R) são também exploradas. / In this work we explore the Fibonacci and Lucas numbers. The majority of the historical results are stated and proved. Along the text several identities concerning Fibonacci and Lucas numbers are shown valid for all integers. Generalized Fibonacci sequences, the relation between Fibonacci and Lucas numbers with the roots of the equation x2 -x -1 = 0 and the connection between Fibonacci and Lucas numbers with a class of matrices in M2(R) are also explored.
|
6 |
Combinatorial Interpretations of Fibonomial IdentitiesReiland, Elizabeth 01 May 2011 (has links)
The Fibonomial numbers are defined by \[ \begin{bmatrix}n \\ k \end{bmatrix} = \frac{\prod_{i=n-k+1} ^{n} F_i}{\prod_{j=1}^{k} F_j} \] where $F_i$ is the $i$th Fibonacci number, defined by the recurrence $F_n=F_{n-1}+F_{n-2}$ with initial conditions $F_0=0,F_1=1$. In the past year, Sagan and Savage have derived a combinatorial interpretation for these Fibonomial numbers, an interpretation that relies upon tilings of a partition and its complement in a given grid.In this thesis, I investigate previously proven theorems for the Fibonomial numbers and attempt to reinterpret and reprove them in light of this new combinatorial description. I also present combinatorial proofs for some identities I did not find elsewhere in my research and begin the process of creating a general mapping between the two different Fibonomial interpretations. Finally, I provide a discussion of potential directions for future work in this area.
|
7 |
Novas identidades envolvendo os números de Fibonacci, Lucas e Jacobsthal via ladrilhamentos / New identities involving Fibonacci, Lucas and Jacobsthal numbers using tilingsSpreafico, Elen Viviani Pereira, 1986- 11 November 2014 (has links)
Orientador: José Plínio de Oliveira Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T02:14:38Z (GMT). No. of bitstreams: 1
Spreafico_ElenVivianiPereira_D.pdf: 1192138 bytes, checksum: 2b12cd351b94a0f2f7ec24fc172305c9 (MD5)
Previous issue date: 2014 / Resumo: Neste trabalho, colaboramos com provas combinatórias que utilizam a contagem e a q-contagem de elementos em conjuntos de ladrilhamentos com restrições. Na primeira parte do trabalho utilizamos os ladrilhamentos para demonstrar algumas identidades da teoria das partições, dentre elas, o Teorema dos Números Triangulares e o Teorema q-análogo da Série q-Binomial. Na segunda parte do trabalho apresentamos interpretações combinatórias, via ladrilhamento, para algumas identidades envolvendo os números de Jacobsthal e os números generalizados de Jacobsthal . Na terceira parte do trabalho são dadas novas identidades envolvendo os números q-análogos de Jacobsthal e encontramos generalizações para essas novas identidades. Por fim, definimos duas novas sequências: números de Fibonacci generalizados e números de Lucas generalizados e, utilizando ladrilhamentos, estabelecemos e demonstramos novas identidades envolvendo esses números / Abstract: In this work we present combinatorial proofs by making use of tilings. In the first part we use tilings to prove some identities on Partitions Theory, including Triangular Numbers' Theorem and q-analogue of q-Binomial Theorem. In the second part we present combinatorial interpretations, using tilings, for some identities involving Jacobsthal numbers and generalized Jacobsthal numbers. Next we find new identities involving an q-analogue of Jacobsthal numbers and generalizations for these new identities. Finally, we define two new sequences: generalized Fibonacci numbers and generalized Lucas numbers, and using tilings, we prove new identities involving these numbers / Doutorado / Matematica Aplicada / Doutora em Matemática Aplicada
|
8 |
Fibonacci Numbers and Associated MatricesMeinke, Ashley Marie 18 July 2011 (has links)
No description available.
|
9 |
Propriedades e generalizações dos números de FibonacciAlmeida, Edjane Gomes dos Santos 29 August 2014 (has links)
Submitted by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-11-30T12:34:27Z
No. of bitstreams: 1
arquivototal.pdf: 766531 bytes, checksum: ad20186d0268a15265279ab809f9fd2f (MD5) / Approved for entry into archive by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-11-30T12:38:24Z (GMT) No. of bitstreams: 1
arquivototal.pdf: 766531 bytes, checksum: ad20186d0268a15265279ab809f9fd2f (MD5) / Made available in DSpace on 2015-11-30T12:38:24Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 766531 bytes, checksum: ad20186d0268a15265279ab809f9fd2f (MD5)
Previous issue date: 2014-08-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is about research done Fibonacci's Numbers. Initially it presents a brief
account of the history of Leonardo Fibonacci, from his most famous work,The Liber
Abaci, to the relationship with other elds of Mathematics. Then we will introduce
some properties of Fibonacci's Numbers, Binet's Form, Lucas' Numbers and
the relationship with Fibonacci's Sequence and an important property observed by
Fermat. Within relationships with other areas of Mathematics, we show the relationship
Matrices, Trigonometry and Geometry. Also presents the Golden Ellipse
and the Golden Hyperbola. We conclude with Tribonacci's Numbers and some properties
that govern these numbers. Made some generalizations about Matrices and
Polynomials Tribonacci. / Este trabalho tem como objetivo o estudo dos Números de Fibonacci. Apresenta-se
inicialmente um breve relato sobre a história de Leonardo Fibonacci, desde sua obra
mais famosa, O Liber Abaci, até a relação com outros campos da Matemática. Em
seguida, apresenta-se algumas propriedades dos Números de Fibonacci, a Fórmula
de Binet, os Números de Lucas e a relação com a Sequência de Fibonacci e uma importante
propriedade observada por Fermat. Dentro das relações com outras áreas
da Matemática, destacamos a relação com as Matrizes, com a Trigonometria, com a
Geometria. Apresenta-se também a Elipse e a Hipérbole de Ouro. Concluímos com
os Números Tribonacci e algumas propriedades que regem esses números. Realizamos
algumas generalizações sobre Matrizes e Polinômios Tribonacci.
|
10 |
Etudes sur les équations de Ramanujan-Nagell et de Nagell-Ljunggren ou semblablesDupuy, Benjamin 03 July 2009 (has links)
Dans cette thèse, on étudie deux types d’équations diophantiennes. Une première partie de notre étude porte sur la résolution des équations dites de Ramanujan-Nagell Cx2+ b2mD = yn. Une deuxième partie porte sur les équations dites de Ngell-Ljunggren xp+ypx+y = pezq incluant le cas diagonal p = q. Les nouveaux réesultats obtenus seront appliqués aux équations de la forme xp + yp = Bzq. L’équation de Catalan-Fermat (cas B = 1) fera l’objet d’un traitement à part. / In this thesis, we study two types of diophantine equations. A ?rst part of our study is about the resolution of the Ramanujan-Nagell equations Cx2 + b2mD = yn. A second part of our study is about the Nagell-Ljungren equations xp+yp x+y = pezq including the diagonal case p = q. Our new results will be applied to the diophantine equations of the form xp + yp = Bzq. The Fermat-Catalan equation (case B = 1) will be the subject of a special study.
|
Page generated in 0.0648 seconds