Spelling suggestions: "subject:"ladrilhamento (matemática)"" "subject:"ladrilhamento (latemática)""
1 |
Propriedades dinâmicas e ergódicas de shifts multidimensionais / Dynamic and ergodic properties of multidimensional shiftsColle, Cleber Fernando, 1985- 19 August 2018 (has links)
Orientador: Eduardo Garibaldi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T00:20:51Z (GMT). No. of bitstreams: 1
Colle_CleberFernando_M.pdf: 1068657 bytes, checksum: 78c9700800b05194ffcf66838581b081 (MD5)
Previous issue date: 2011 / Resumo: Focaremos sobre aspectos dinâmicos e ergódicos de shifts multidimensionais, atentando especialmente para suas relações com estados fundamentais e quase-cristais em reticulados. Por exemplo, em mecânica estatística, dado um potencial invariante por translação, seus estados fundamentais são medidas de probabilidade invariantes por translação suportadas no conjunto de suas configurações fundamentais, isto é, das configurações com energia específica mínima. Estados fundamentais são naturalmente associados com o bordo de certos polítopos convexos dimensionalmente finitos. Esse bordo se torna drasticamente diferente se a dimensão do modelo em questão passa de d = 1 para d > 1, pois no caso multidimensional existe shift de tipo finito unicamente ergódico sem configurações periódicas / Abstract: We will focus on dynamic and ergodic aspects of multidimensional shifts, with particular care to their relations with ground states and quasicrystals in lattices. For example, in statistical mechanics, given a translation-invariant potential, its ground states are translation-invariant probability measures supported on the set of its ground configurations, i.e., of configurations with minimal specific energy. Ground states are naturally associated with the boundary of certain finite-dimensional convex polytopes. This boundary becomes drastically different if the dimension of the model in question changes from d = 1 to d > 1, because in the multidimensional case there exists uniquely ergodic shift of finite type with no periodic configurations / Mestrado / Matematica / Mestre em Matemática
|
2 |
Tesselações hiperbólicas aplicadas a codificação de geodésicas e códigos de fonte / Hyperbolic tessellations applied to geodesic coding and source codesLeskow, Lucila Helena Allan, 1972- 07 November 2011 (has links)
Orientador: Reginaldo Palazzo Junior / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-18T16:51:18Z (GMT). No. of bitstreams: 1
Leskow_LucilaHelenaAllan_D.pdf: 2583405 bytes, checksum: 3161d9deabaa60a8965a9e3d20ff36aa (MD5)
Previous issue date: 2011 / Resumo: Neste trabalho apresentamos como contribuição um novo conjunto de tesselações do plano hiperbólico construídas a partir de uma tesselação bem conhecida, a tesselação de Farey. Nestas tesselações a região de Dirichlet é formada por polígonos hiperbólicos de n lados, com n > 3. Explorando as características dessas tesselações, apresentamos alguns tipos possíveis de aplicações. Inicialmente, estudando a relação existente entre a teoria das frações contínuas e a tesselação de Farey, propomos um novo método de codificação de geodésicas. A inovação deste método está no fato de ser possível realizar a codificação de uma geodésica pertencente a PSL(2,Z) em qualquer uma das tesselações ou seja, para qualquer valor de n com n > 3. Neste método mostramos como é possível associar as sequências cortantes de uma geodésica em cada tesselação à decomposição em frações contínuas do ponto atrator desta. Ainda explorando as características dessas novas tesselações, propomos dois tipos de aplicação em teoria de codificação de fontes discretas. Desenvolvendo dois novos códigos para compactação de fontes (um código de árvore e um código de bloco), estes dois métodos podem ser vistos como a generalização dos métodos de Elias e Tunstall para o caso hiperbólico / Abstract: In this work we present as contribution a new set of tessellations of the hyperbolic plane, built from a well known tessellation, the Farey tessellation. In this set of tessellations the Dirichlet region is made of hyperbolic polygons with n sides where n > 3. While studying these tessellations and theirs properties, we found some possible applications. In the first one, while exploring the relationship between the continued fractions theory and the Farey tessellation we propose a new method for coding geodesics. Using this method, it is possible to obtain a relationship between the cutting sequence of a geodesic belonging to PSL(2,Z) in each tessellation and the continued fraction decomposition of its attractor point. Exploring the characteristics of these tessellations we also propose two types of applications regarding the discrete memoryless source coding theory, a fixed-to-variable code and a variable length-to-fixed code. These methods can be seen as a generalized version of the Elias and Tunstall methods for the hyperbolic case / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
|
3 |
Novas identidades envolvendo os números de Fibonacci, Lucas e Jacobsthal via ladrilhamentos / New identities involving Fibonacci, Lucas and Jacobsthal numbers using tilingsSpreafico, Elen Viviani Pereira, 1986- 11 November 2014 (has links)
Orientador: José Plínio de Oliveira Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T02:14:38Z (GMT). No. of bitstreams: 1
Spreafico_ElenVivianiPereira_D.pdf: 1192138 bytes, checksum: 2b12cd351b94a0f2f7ec24fc172305c9 (MD5)
Previous issue date: 2014 / Resumo: Neste trabalho, colaboramos com provas combinatórias que utilizam a contagem e a q-contagem de elementos em conjuntos de ladrilhamentos com restrições. Na primeira parte do trabalho utilizamos os ladrilhamentos para demonstrar algumas identidades da teoria das partições, dentre elas, o Teorema dos Números Triangulares e o Teorema q-análogo da Série q-Binomial. Na segunda parte do trabalho apresentamos interpretações combinatórias, via ladrilhamento, para algumas identidades envolvendo os números de Jacobsthal e os números generalizados de Jacobsthal . Na terceira parte do trabalho são dadas novas identidades envolvendo os números q-análogos de Jacobsthal e encontramos generalizações para essas novas identidades. Por fim, definimos duas novas sequências: números de Fibonacci generalizados e números de Lucas generalizados e, utilizando ladrilhamentos, estabelecemos e demonstramos novas identidades envolvendo esses números / Abstract: In this work we present combinatorial proofs by making use of tilings. In the first part we use tilings to prove some identities on Partitions Theory, including Triangular Numbers' Theorem and q-analogue of q-Binomial Theorem. In the second part we present combinatorial interpretations, using tilings, for some identities involving Jacobsthal numbers and generalized Jacobsthal numbers. Next we find new identities involving an q-analogue of Jacobsthal numbers and generalizations for these new identities. Finally, we define two new sequences: generalized Fibonacci numbers and generalized Lucas numbers, and using tilings, we prove new identities involving these numbers / Doutorado / Matematica Aplicada / Doutora em Matemática Aplicada
|
4 |
Análise dos emparelhamentos de arestas de polígonos hiperbólicos para a construção de constelações de sinais geometricamente uniformes / Analysis of the pairing up of hyperbolical polygon sides for the construction of sign constellation geometrical uniformAlves, Alessandro Ferreira 19 August 2018 (has links)
Orientador: Reginaldo Palazzo Junior / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-19T09:31:01Z (GMT). No. of bitstreams: 1
Alves_AlessandroFerreira_D.pdf: 1080224 bytes, checksum: 0748952c3176e9548151bec7e6d9c71d (MD5)
Previous issue date: 2011 / Resumo: Para projetarmos um sistema de comunicação digital em espaços hiperbólicos é necessário estabelecer um procedimento sistemático de construção de reticulados como elemento base para a construção de constelações de sinais. De outra forma, em codificação de canal é de fundamental importância a caracterização das estruturas algébrica e geométrica associadas a canais discretos sem memória. Neste trabalho, apresentamos a caracterização geométrica de superfícies a partir dos possíveis emparelhamentos das arestas do polígono fundamental hiperbólico com 3 ? n ? 8 lados associado 'a superfície. Esse tratamento geométrico apresenta propriedades importantes na determinação dos reticulados hiperbólicos a serem utilizados no processo de construção de constelações de sinais, a partir de grupos fuchsianos aritméticos e da superfície de Riemann associada. Além disso, apresentamos como exemplo o desenvolvimento algébrico para a determinação dos geradores do grupo fuchsiano 'gama'8 associado ao polígono hiperbólico 'P IND. 8' / Abstract: In order to design a digital communication system in hyperbolic spaces is necessary to establish a systematic procedure of constructing lattices as the basic element for the construction of the signal constellations. On the other hand, in channel coding is of fundamental importance to characterize the geometric and algebraic structures associated with discrete memoryless channels. In this work, we present a geometric characterization of surfaces from the edges of the possible pairings of fundamental hyperbolic polygon with 3 ? n ? 8 sides associated with the surface. This treatment has geometric properties important in determining the hyperbolic lattices to be used in the construction of sets of signals derived from arithmetic Fuchsian groups and the associated Riemann surface / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
|
Page generated in 0.0833 seconds