Spelling suggestions: "subject:"dumber theory"" "subject:"1umber theory""
1 |
An Equivariant Main Conjecture in Iwasawa Theory and the Coates-Sinnott ConjectureTaleb, Reza 10 1900 (has links)
<p>The classical Main Conjecture (MC) in Iwasawa Theory relates values of p-adic L-function associated to 1-dimensional Artin characters over a totally real number field F to values of characteristic polynomials attached to certain Iwasawa modules. Wiles [47] proved the MC for odd primes p over arbitrary totally real base fields F and for the prime 2 over abelian totally real fields F.</p> <p>An equivariant version of the MC, which combines the information for all characters of the Galois group of a relative abelian extension E/F of number fields with F totally real, was formulated and proven for odd primes p by Ritter and Weiss in [33] under the assumption that the corresponding Iwasawa module is finitely generated over ℤ<sub>p</sub> ("µ=0"). This assumption is satisfied for abelian fields and conjectured to be true in general.</p> <p>In this thesis we formulate an Equivariant Main Conjecture (EMC) for all prime numbers p, which coincides with the version of Ritter and Weiss for odd p, and we provide a unified proof of the EMC for all primes p under the assumptions µ=0 and the validity of the 2-adic MC. The proof combines the approach of Ritter and Weiss with ideas and techniques used recently by Greither and Popescu [13] to give a proof of a slightly different formulation of an EMC under the same assumptions (p odd and µ=0) as in [33].</p> <p>As an application of the EMC we prove the Coates-Sinnott Conjecture, again assuming µ=0. We also show that the p-adic version of the Coates-Sinnott Conjecture holds without the assumption µ=0 for abelian Galois extensions E/F of degree prime to p. These generalize previous results for odd primes due to Nguyen Quang Do in [27], Greither-Popescu [13], and Popescu in [30].</p> / Doctor of Philosophy (PhD)
|
2 |
A fundamental inequality in additive number theory and some related numerical functions /Daily, Mary Lou. January 1972 (has links)
Thesis (Ph. D.)--Oregon State University, 1972. / Typescript (photocopy). Includes bibliographical references. Also available on the World Wide Web.
|
3 |
Zwei Beiträge zur ZahlentheorieHammerstein, Adolf, January 1919 (has links)
Thesis (doctoral)--Georg-August-Universität zu Göttingen, 1919. / Vita.
|
4 |
Arithmetische Untersuchungen über Discriminanten und ihre ausserwesentlichen TheilerHensel, Kurt, January 1884 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1884. / Vita. Includes bibliographical references.
|
5 |
Neuer Beweis der Gleichung [Summe] k=1 [unendlich] [mu](k)/k=0Landau, Edmund, January 1899 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1899. / On t.p. "[Summe]" appears as the summation symbol, "k=1" appears under the summation symbol, and "[unendlich]" appears as the infinity symbol above the summation. Vita. Includes bibliographical references.
|
6 |
Ueber das Gesetz, nach welchem die mittlere Darstellbarkeit der natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse der Zahlen wächstPiltz, Adolf, January 1900 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1881. / Vita. Includes bibliographical references.
|
7 |
Ueber Zahlkörper, die aus dem Körper der rationalen Zahlen durch Adjunktion von Wurzelausdrücken hervorgehenPrölss, Dora, January 1900 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1922. / Vita. Includes bibliographical references.
|
8 |
Verdelingsproblemen bij gegeneraliseerde duale breukenSanders, Johannes Marinus. January 1950 (has links)
Academisch proefschrift--Amsterdam. / At head of title: Vrije Universiteit Amsterdam. Summary in English. "Stellingen": [4] p. inserted.
|
9 |
Analytical investigations in Waring's theorem ...James, Ralph Duncan, January 1934 (has links)
Thesis (Ph. D.)--University of Chicago, 1932. / Vita. Lithoprinted. "Private edition, distributed by the University of Chicago libraries, Chicago, Illinois."
|
10 |
Concerning Waring's problem for sixth powersShook, Robert Clarence, January 1934 (has links)
Thesis (Ph. D.)--University of Chicago, 1934. / Vita. Lithoprinted. "Private edition, distributed by the University of Chicago libraries, Chicago, Illinois."
|
Page generated in 0.0604 seconds