Spelling suggestions: "subject:"fibre composites"" "subject:"libre composites""
1 |
Environmental degradation and stress corrosion of hybrid fibre compositesFrench, Mark Andrew January 1990 (has links)
No description available.
|
2 |
Mechanical behaviour of glass-polyester composite formed by resin transfer mouldingDavallo, Mehran January 2000 (has links)
No description available.
|
3 |
The effect of inextensibility on elastic surface and interfacial wavesCaptain, V. S. January 1987 (has links)
No description available.
|
4 |
The strength of hybrid compositesPitkethly, M. J. January 1987 (has links)
The strength of carbon fibres in unidirectional hybrid composites of glass and carbon fibres have been investigated. It has been shown that the strength distributions of bundles of carbon fibres impregnated with resin, both unsupported and in a hybrid, may be described by the Weibull model confirming earlier reports. The primary objective of this work has been to investigate the strength and the state of dispersion of the carbon component. Hybrid composites consisting of accurately aligned arrays of bundles in two and three dimensions have been fabricated and tested. It has been shown that the strength decreases when the bundle spacing is less than a critical distance but at very low spacings the strength begins to increase again. This observation is explained with reference to the fracture behaviour and the implications for practical composites are discussed. The hybrid composites exhibit a greater strength over impregnated bundles. An hypothesis is proposed to explain this phenomena which combines thermal effects with the constraining influence of the glass and the differences in the severity of flaws in hybrid bundles. The last two arguments result in a larger critical group of failed fibres being required in the hybrid before catastrophic failure occurs. The type of hybrid specimen tested in this work enables the fracture process in the composite to be followed closely. The investigation has in principle supported the model for composite strength proposed by Batdorf, the "critical i-plet" model. However, experimental evidence indicated that a slightly different fracture process to that proposed by Batdorf was operating. The significance of this fracture process with respect to the strength and the size effect in composites is discussed.
|
5 |
The compressive failure of silicon carbide monofilament reinforced titaniumSpowart, Jonathan Edward January 1997 (has links)
No description available.
|
6 |
The Improvement of Interfacial Bonding, Weathering and Recycling of Wood Fibre Reinforced Polypropylene CompositesBeg, Mohammad Dalour Hossen January 2007 (has links)
This study deals with medium density wood fibre (MDF) and Kraft fibre reinforced polypropylene (PP) composites produced using extrusion followed by injection moulding. Initially, composites were produced with MDF fibre using 10, 20, 30, 40, 50 and 60 wt% fibre, and 1, 2, 3 and 4 wt% maleated polypropylene (MAPP) as a coupling agent. A fibre content of 50 wt% with 3 wt% MAPP was found to be optimum. Alkali treatment of fibre was carried out to improve the interfacial bonding. After treatment, fibre surface charge was found to increase, but single fibre tensile strength (TS) and Young's modulus were (YM) decreased. Alkali treatment reduced composite TS but increased YM. The effects of hemicellulose and residual lignin content were assessed with Kraft fibre (subjected to different stages of a standard Kraft pulping process and therefore consisting of different hemicellulose and residual lignin contents). Fibre surface charge was found to increase with decreasing residual lignin content. Composites containing higher amounts of lignin lead to lower TS and lower thermal stability. Composites were subjected to accelerated weathering for 1000 hours. TS and YM were found to decrease during weathering, and the extent of reduction was found to be higher for composites with higher residual lignin. The reduction of mechanical properties was found to be due to degradation of lignin and PP chain scission as evaluated by increase in PP crystallinity after weathering. As low lignin (bleached) Kraft fibre composites were found to provide superior mechanical properties, as well as more stable during accelerated weathering, further study including optimisation of MAPP content, effects of fibre contents, fibre length, fibre beating, hygrothermal ageing and recycling were carried out with bleached Kraft fibre. MAPP contents of 1, 2, 3, 4, 5, 7 and 10 wt% were used in Kraft fibre reinforced PP composites, and 3-5 wt% was found to be most favourable. Composite fibre content was varied between 30-50 wt%, and 40 wt% found to provide the maximum TS. To investigate the effects of fibre length on composites, fibre fractions of different length distribution were separated using a pressure screen. TS, YM and impact strength were found to decrease and failure strain (FS) increased with decreasing fibre length. To improve the interfacial bonding, the fibre was treated by mechanical beater. Fibre beating increased the TS of composites up to a certain point, beyond which TS decreased. Hygothermal ageing of composites was carried out by immersing specimens in distilled water at 30, 50 and 70 C over an 8-month period. Equilibrium moisture content and diffusion coefficient increased with increased fibre content in composites as well as with increased immersion temperature. Composites without coupling agent showed higher water uptake and diffusion coefficient than that of with coupling agent. After hygrothermal ageing the TS and YM decreased but FS and impact strength were found to increase. An investigation into the effects of recycling was carried out with composites containing either 40 wt% or 50 wt% fibre (bleached Kraft) with 4 wt% MAPP, and recycled up to eight times. For composites with 40 wt% fibre, TS and YM were found to decrease with increased recycling by up to 25% for TS and 17% for YM (after being recycled 8 times). Although TS was lower for virgin composites with 50 wt% fibre than for those with 40 wt% fibre, this initially increased with recycling by up to 14% (after being recycled 2 times), which was considered to be due to improved fibre dispersion, but then decreased with further recycling, and an overall 11% reduction of TS was found after recycling 8 times compared to the virgin composites. YM was higher for virgin composites with 50 wt% fibre than those with for 40 wt% fibre, and also initially increased with recycling but decreased upon further recycling. Recycling was found to increase thermal stability. The TS of composites made by combining recycled with virgin materials was also assessed. Hygrothermal ageing behaviour of recycled composites was also investigated by immersing specimens in distilled water at 50 C over a 9 month period. It was found that the diffusion coefficient and the equilibrium moisture contents of composites decreased with increased number of times the materials were recycled. After hygrothermal ageing, TS and YM of composites were found to decrease. However, the extent of reduction was found to decrease with increased recycling.
|
7 |
Developing and Characterizing New Materials Based on Natural Fibres and Waste PlasticThamae, THIMOTHY 03 December 2008 (has links)
Natural Fibre Composites (NFCs) offer new opportunities to mitigate negative impact of engineering activities on the environment. Due to their lost cost, light weight and environmental benefits, they find applications in building, furniture and automotive industry. This study seeks to improve mechanical properties of composites made from waste recyclable plastics and natural fibres from agricultural byproduct sources such as Agave americana leaves, corn, wheat and seed flax straws. The approach used is a holistic one which includes investigating the availability and properties of natural fibres and their composites with waste plastic for use in Canada and Lesotho, a small country in Southern Africa. The social and environmental implications of using these materials are also investigated.
In both Lesotho and Canada, there are enough raw materials which can be used in NFCs if the necessary environment is developed. The unique microstructural and interfacial behaviour of Agave americana fibres were investigated and their possible impact on the composites forecasted. Composites made with a variety of underutilized natural fibres: Agave americana, corn, seed flax and wheat were also manufactured and tested. The addition of natural fibres and milled straw to the waste plastic improved mainly the tensile and flexural moduli of the composites. The environmental properties of NFCs were also analyzed through a case study using Life Cycle Assessment (LCA) as tool. The results suggest that NFCs could be seen as a more environmentally friendly alternative than conventional composites. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2008-12-03 12:32:23.095
|
8 |
Shear properties of unidirectional carbon fibre compositesBroughton, William Richard January 1990 (has links)
No description available.
|
9 |
Hemp fibre reinforced sheet moulding compoundsPatel, Harish January 2012 (has links)
Glass fibres are by far the most extensively used fibre reinforcement in thermosetting composites because of their excellent cost-performance ratio. However, glass fibres have some disadvantages such as non- renewability and problems with ultimate disposal at the end of a materials lifetime since they cannot be completely thermally incinerated. The possibility of replacing E-glass fibres with hemp fibres as reinforcement in sheet moulding compounds (SMC) is examined in this thesis. The composites are manufactured with existing SMC processing techniques and similar resin formulation as used in the commercial industry. An attempt is made to enhance/optimise the mechanical properties of hemp/polyester composites. For this the fibre-matrix interface is modified via chemical modifications with alkaline and silane treatments. Influence of hemp fibre volume fraction, calcium carbonate (CaCO3)filler content and fibre-matrix interface modification on the mechanical properties of hemp fibre-mat-reinforced sheet moulding compounds (H-SMC) is studied. The results of H-SMC composites are compared to E-glass fibre-reinforced sheet moulding compounds (G-SMC). In order to get a better insight in the importance of these different parameters for the optimisation of composite performance, the experimental results are compared with theoretical predictions made using modified micromechanical models such as Cox-Krenchel and Kelly- Tyson for random short-fibre-reinforced composites. These models are supplemented with parameters of composite porosity to improve the prediction of natural fibre composite tensile properties. The influence of impact damage on the residual exural strength of the H-SMC composites is investigated to improve the understanding of impact response of natural fibre reinforced composites. The result of penetration and absorbed energies during non-penetrating impact of H-SMC composites are investigated and compared to values for G-SMC. A simple mechanistic model has been developed for H-SMC composites and is used to get an insight into the impact behaviour of these composite as well as to provide a guideline to compare the experimental results with theoretically calculated data. The fracture toughness properties in terms of the critical-stress-intensity factor KIc, and critical strain energy release rate, GIc, of H-SMC and G-SMC composites are studied using the compact tension (CT) method. It was shown that fracture toughness of H-SMC composites is significantly lower than that of glass fibre reinforced composites (G- SMC). However, results show that with an optimum combination of fibre volume fraction, (CaCO3) filler and surface treatment of the hemp fibres can result in H-SMC composites that have fracture toughness properties that can be exploited for low to medium range engineering applications. It is recommended that to further improve the fracture toughness properties of these natural fibre reinforced composites more research needs to be devoted to the optimization of the fibre-matrix interface properties and ways of reducing porosity content in these composites. Finally, environmental impact of H-SMC composite with conventional G-SMC composite for automotive and non-automotive applications was compared. The composites were assumed to be made in a traditional SMC manufacturing method. Two different types of performance requirements; i.e. stiffness and strength were investigated for both the non-automotive and automotive parts. Two different disposal scenarios: landfill and incineration of the SMC product at the end of life was considered. The LCA results demonstrate that the environmental impact of H-SMC composites is lower than the reference G-SMC composites. G-SMC composites have a significantly higher environmental impact on climate change, acidification and fossil fuels than H-SMC composites. Where as H-SMC composites have a much higher impact on land use and ecotoxicity than G-SMC composites.
|
10 |
Growth of carbon nanotubes on electrospun cellulose fibres for high performance supercapacitors and carbon fibre compositesLi, Qiang January 2018 (has links)
The production of cellulose derived hybrid carbon nanofibre (CNF)/carbon nanotubes (CNTs) electrodes for the fabrication of supercapacitors and carbon fibre composites was investigated. The CNTs were grown via a floating catalyst chemical vapor deposition (CVD) method on the top surface of electrospun cellulose derived CNFs. These CNF and CNF/CNTs samples were then used as electrodes to produce liquid electrolyte-based supercapacitors. The growth of CNTs leads to an improvement of electrochemical performance compared to the plain CNFs. This improvement is due to the grown CNTs enlarging the reactive sites through enhanced surface area and porosity, and thereby increasing the conductivity of the system. CNTs have been also grown onto CNFs containing ferrocene and SiC particles. Composites were fabricated by combining the fibres and CNTs grown fibres with model polymers. The stress transfer properties of these materials have been estimated using an in situ Raman spectroscopic method by observing the shift of the Raman band during the tensile deformation of model polymer composites. Using this method, the elastic modulus of CNF/SiC/CNTs fibres has been estimated to be 208 ± 26 GPa. No shifts in the peak positions of bands relating to the carbon structure were obtained for in situ Raman spectroscopic studies of the CNF/CNTs fibres made from the ferrocene embedded fibres. This was thought to be due to the low yield of CNTs on the surface of the fibres. Furthermore, CNF/CNTs electrode-based structural supercapacitors, combining a solid electrolyte with the carbonized fibres, have been produced. These CNF/CNTs electrodes have a better capacitive performance than the plain CNF electrodes. There was a decrease in this performance with increased curing time of the resin, from 2 to 24 h, due to a lack of charge carrier mobility in the latter samples. A Raman spectroscopic study of the deformation of the carbon structures showed that the G-band shift towards a lower wavenumber position for the CNF and CNF/CNTs samples processed at a carbonization temperature of 2000 °C. Moduli of these fibres were estimated to be ~145 GPa and ~271 GPa, respectively, suggesting the growth of CNTs not only enhances the capacitive performance but also the mechanical properties of the structural supercapacitors. No Raman bend shift was found for the CNFs and CNF/CNTs samples processed below a carbonization temperature of 2000 °C, e.g. 900 °C and 1500 °C. This is because the graphitic structures are not well developed at carbonization temperatures below 1500 °C.
|
Page generated in 0.0888 seconds