• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pull-out of hooked end steel fibres : experimental and numerical study

Mpanga-A-Kangaj, Christian January 2013 (has links)
Abstract The reinforcement of concrete with steel fibres changes the failure of the composite material from catastrophic brittle failure to pseudo-ductile behaviour as a result of crack-bridging by the fibres, and the additional work which is absorbed by fibre pull-out. A good understanding of the properties of the fibre-reinforced concrete depends on an understanding of the fibre pull-out process. The main aim of the current study is to investigate, both experimentally and numerically, the pull-out behaviour of a single hooked end steel fibre from epoxy matrix, where epoxy was chosen to replace concrete in order to enable visualisation of the pull-out process. The experimental and numerical results both contribute to the development of a physical understanding of the mechanism of pull-out. Experimental studies included the evaluation of the mechanical properties of hooked end steel fibre and epoxy matrix by means of tensile tests, the manufacturing of pull-out specimens consisting of a single hooked end steel fibre embedded in epoxy matrix, and the experimental characterisation of the fibre pull-out. The significant features (peaks and minima) of the load vs. displacement graph were correlated to stills taken from a video of the pull-out process, in which the plastic deformation of the fibre is evident. Small deformations (spalling) were also observed in the matrix. A model is proposed for the mechanisms which interact during the pull-out process. / Dissertation (MEng)--University of Pretoria, 2013. / gm2014 / Mechanical and Aeronautical Engineering / unrestricted
2

Fibre-matrix interaction in mineral-bonded composites under dynamic loading

Wölfel, Enrico 22 February 2022 (has links)
Short fibres of different materials are used for crack bridging in strain-hardening cement-based composites (SHCC). Their mechanical properties and the fibre-matrix interphase on the micro level have a significant influence on the macroscopic component properties. Investigations on the specific modification and adaptation of fibre properties in relation with the failure mechanisms at different strain rates hardly exist so far, since mainly commercially available fibres are used. In the frame of this work, two different fibre types – polypropylene (PP) fibres and alkali-resistant (AR) glass fibres – were produced on lab spinning devices and the properties were adapted in such a way that fundamental correlations between the influence of fibre geometry, mechanical properties, chemical functionalities and surface structure on the behaviour during fibre pull-out from the concrete matrix can be derived. The PP fibres were produced with different degrees of stretching, cross-sectional geometries (circular, trilobal) and fibre diameters, as well as without and with sizing. The resulting changes in the crystallinity of the PP structure, surface roughness and wetting behaviour could be demonstrated by differential scanning calorimetry (DSC), roughness measurements by atomic force microscopy (AFM), and contact angle measurements. AR glass fibres were used in the unsized state and various chemical surface treatments were applied. Aqueous polymer dispersions of different materials were characterized in detail regarding particle size, pH value, solid content, and surface tension. In addition, their film-forming properties were evaluated using prepared polymer films. Furthermore, the influence of cross-linking agents on the thermal and mechanical stability of polyurethane sizings was investigated using thermal analysis methods. After application of the sizings to the AR glass surface, changes in surface structure and roughness could be observed by scanning electron microscopy (SEM) and AFM. The amount of sizing, or rather the polymer content on the fibres, was systematically increased and investigated in the non-cross-linked and cross-linked state with respect to energy absorption during fibre pull-out. Using a high-strength concrete matrix, all modified PP and AR glass fibres were used to produce and test single-fibre model composites by single-fibre pull-out tests, whereby the fibre pull-out was either quasi-static or dynamic. Based on the test results, design strategies for PP and AR glass fibres were derived at the end of the thesis. / Für die Rissüberbrückung in hochduktilen Betonen (Strain-Hardening Cement-based Composites – SHCC) werden Kurzfasern verschiedener Materialien eingesetzt. Ihre mechanischen Eigenschaften und die Faser-Matrix-Grenzschicht auf der Mikroebene beeinflussen die makroskopischen Bauteileigenschaften deutlich. Untersuchungen zur gezielten Veränderung und Anpassung von Fasereigenschaften im Zusammenhang mit den Versagensmechanismen bei unterschiedlichen Dehnraten existieren bisher kaum, da überwiegend kommerziell verfügbare Fasern eingesetzt werden. Im Rahmen dieser Arbeit wurden daher zwei verschiedene Fasertypen – Polypropylen (PP)-Fasern und alkaliresistente (AR)-Glasfasern – an Laborspinnanlagen selbst hergestellt und die Eigenschaften so angepasst, dass sich grundlegende Zusammenhänge zwischen dem Einfluss von Fasergeometrie, mechanischen Eigenschaften, chemischen Funktionalitäten und Oberflächenstruktur auf das Verhalten bei Faserauszug aus der Betonmatrix ableiten lassen. Die PP-Fasern wurden mit verschiedenen Verstreckungsgraden, Querschnittsgeometrien (rund, trilobal), Faserdurchmessern sowie ohne und mit Schlichte hergestellt. Die dadurch hervorgerufenen Eigenschaftsveränderungen hinsichtlich Kristallinität der PP-Struktur, der Oberflächenrauheit und des Benetzungsverhaltens konnten durch dynamische Differenzkalorimetrie (DSC), Rauheitsmessungen mittels Rasterkraftmikroskopie (AFM) und Kontaktwinkelmessungen nachgewiesen werden. AR-Glasfasern wurden im ungeschlichteten Zustand verwendet und verschiedene chemische Oberflächenbehandlungen durchgeführt. Es wurden wässrige Polymerdispersionen verschiedener Materialien detailliert hinsichtlich ihrer Partikelgröße, pH-Wert, Feststoffgehalt und Oberflächenspannung charakterisiert sowie ihre Filmbildungseigenschaften anhand hergestellter Polymerfilme bewertet. Weiterhin wurde der Einfluss von Vernetzern auf die thermische und mechanische Stabilität von Polyurethanschlichten mit Methoden der thermischen Analyse untersucht. Nach dem Applizieren der Schlichten auf die AR-Glasoberfläche konnten Veränderungen der Oberflächenstruktur und Rauheit mit Rasterelektronenmikroskopie (REM) sowie AFM beobachtet werden. Die Schlichtemenge bzw. der Polymeranteil auf den Fasern wurde systematisch erhöht und im unvernetzten sowie vernetzten Zustand hinsichtlich der Energieabsorption bei Faserauszug untersucht. Mit allen modifizierten PP-Fasern und AR-Glasfasern wurden unter Einsatz einer hochfesten Betonmatrix Einzelfaser-Modellverbunde zur Durchführung von Einzelfaserauszugversuchen (Single-Fibre Pull-Out) hergestellt und geprüft, wobei der Faserauszug entweder quasistatisch oder dynamisch erfolgte. Basierend auf den Versuchsergebnissen wurden am Ende der Arbeit für PP-Fasern und AR-Glasfasern Designstrategien abgeleitet.
3

Mikromechanische Untersuchungen zur Faser-Matrix-Haftung in Faser-Kunststoff-Verbunden:: Einfluss von Härtungsdauer, Feuchtigkeit und Prüfparametern

Sommer, Guido Sebastian 30 August 2018 (has links)
Zur Untersuchung der Faser-Matrix-Haftung in Faser-Kunststoff-Verbunden werden neben makromechanischen Methoden wie dem Querzug und der Drei-Punkt-Biegung mikromechanische Methoden an Einzelfaser-Modellverbunden eingesetzt. Zu letzteren Methoden zählen bspw. der Tropfenabscherversuch, der Einzelfaserauszugversuch (engl. single-fibre pull-out test, SFPO) und der Einzelfaserfragmentierungsversuch (engl. single fibre fragmentation test, SFFT). Bei ihrem Einsatz ist zu beachten, dass sich unterschiedliche Einflussgrößen auf ihre Ergebnisse auswirken können. In der vorliegenden Arbeit wird eine ausführliche Literaturübersicht mit einem detaillierten Überblick zu einer größeren Anzahl verschiedener Einflussgrößen durchgeführt. Daraus werden die Einflussgrößen Härtungsdauer, Feuchtigkeit, freie Faserlänge und Abzugsgeschwindigkeit als Untersuchungsgegenstände dieser Arbeit erarbeitet. Wesentliche aus dieser Arbeit resultierende Ergebnisse und Schlussfolgerungen sind nachstehend zusammengefasst. Härtungsdauer: Bei SFFT-Untersuchungen an Keramikfaser/Epoxidharz-Prüfkörpern wird ein degressiver Anstieg der Faser-Matrix-Haftung über der Härtungsdauer beobachtet. Die Ergebnisse geben Hinweise darauf, dass sich die Härtungsdauer beim SFFT und SFPO prinzipbedingt unterschiedlich auswirkt (aufgrund destruktiver bzw. konstruktiver Überlagerungen von Eigenspannungen und Prüfkraft-induzierten Spannungen). Feuchtigkeit: SFPO-Untersuchungen an Kohlenstoffaser/Epoxidharz-Prüfkörpern nach einmonatiger Konditionierung in feuchtem (50 %rF, 23 °C) bzw. trockenem Klima (0 %rF, 23 °C) belegen eine feuchtebedingt verringerte Haftung. Daraus wird geschlussfolgert, dass eine schwankende Luftfeuchtigkeit auch in diesem eingegrenzten klimatischen Spektrum (bspw. in teilklimatisierten Laboren) als wichtiger potentieller Störfaktor zu beachten ist. Prüfparameter: Auf Basis des Hooke’schen Gesetzes kann für den SFPO gezeigt werden, dass die freie Faserlänge die Maximalkraft beeinflusst und die Einflüsse der freien Faserlänge und der Abzugsgeschwindigkeit auf die Maximalkraft in Zusammenhang stehen. Beides wird anhand von SFPO-Untersuchungen an Glasfaser/Epoxidharz-Prüfkörpern bestätigt. Ferner wird aus den Untersuchungen geschlussfolgert, dass eine Geschwindigkeitserhöhung von 0,01 µm/s auf 0,1 µm/s zur Reduzierung der Versuchsdauer – im vorliegenden Fall von 30 45 min auf 6 8 min – vertretbar ist. Darüber hinaus werden anhand von Fehlerverstärkungsfaktoren differenzierte Aussagen zum Einfluss fehlerhaft bestimmter Eingangsdaten auf die Berechnung der lokalen Grenzflächenscherfestigkeit generiert. / For investigating fibre-matrix adhesion in fibre-polymer composites, macromechanical methods such as transverse tensile and three-point bending tests can be applied as well as micromechanical methods for which single-fibre model composites are used. The latter category of methods includes microbond, single-fibre pull-out (SFPO) and single-fibre fragmentation tests (SFFT). When applying these methods, it needs to be considered that their results can be affected by different influencing factors. In the present thesis, an extensive literature survey with a detailed overview of a larger number of influencing factors is conducted. Based on this overview, the factors curing time, moisture, free fibre length and test speed are acquired as objects of investigation of this thesis. Main results and conclusions of this work are summarised below. Curing time: Results from SFFT investigations on ceramic fibre/epoxy-specimens exhibit a degressive increase of fibre-matrix adhesion with curing time. This indicates that curing time affects SFFT and SFPO results differently due to different underlying principles (based on destructive and, respectively, constructive superposition of internal stresses and load-induced stresses). Moisture: SFPO specimens (carbon fibre/epoxy) are conditioned in humid (50 %rH, 23 °C) and dry climate (0 %rH, 23 °C) for one month prior to testing. The results show lower adhesion due to moisture. It is concluded that uncontrolled humidity, even in this limited climatic spectrum, needs to be considered as an important potential factor of influence (e.g. in partially climatised laboratories). Test parameters: Based on Hooke’s law, it is demonstrated for the SFPO that a) the free fibre length affects the maximum force and b) the effects of the free fibre length and the test speed on the maximum force are interrelated. Both is confirmed with results from SFPO investigations on glass fibre/epoxy-specimens. Furthermore, it is deduced from the above investigations that an increase in test speed from 0.01 µm/s to 0.1 µm/s is legitimate for reducing test duration – in the present case from 30 45 min to 6 8 min. In addition, the effect of erroneously determined input data on the calculation of the local interfacial shear strength is studied using conditions numbers (a measure for the propagation of error). With this, differentiated statements are generated.
4

Crack-bridging behaviour of polymer fibres in Strain-Hardening Cement-based Composites (SHCC) subject to alternating tension-compression cyclic loading

Ranjbarian, Majid 09 December 2021 (has links)
Concrete is undoubtedly the most important construction material, with widespread applications worldwide. Despite its many advantages, however, concrete exhibits low tensile strength and tends toward brittle failure. The most promising approach for improvement of its tensile properties is the addition of fibres. By addition of only one or two percent of high-performance polymer fibres to a cementitious matrix, strain-hardening can be developed under uniaxial tensile loading. Such materials yield multiple cracking and permit large inelastic deformation in a hardening regime, for which they are usually called Strain-Hardening Cement-based Composites (SHCC). However, the behaviour of SHCC depends on loading conditions, where the most critical case is cyclic loading in tension-compression regimes, in which the ductile properties of the composite can be lost after only several hundred cycles due to degradation of the fibre bridging capacity. The thesis at hand presents the results of experimental investigations into the crack-bridging behaviour of polymer fibres in SHCC subject to alternating tension-compression loading regimes. The investigations covered monotonic loading as well. The experimental programme included fibre tension tests; single-sided, single fibre pull-out tests; double-sided, single and multiple fibre pull-out tests; and microscopic analysis of the specimens after testing. The bridging and pull-out behaviour of single PVA fibres embedded in cement-based matrices were comprehensively characterised and described by a new model. The Locking Front Model explains different interaction phenomena between fibre and matrix after full de-bonding. Furthermore, the interaction and damage mechanisms under cyclic loading were understood. The damage types depend on various parameters such as fibre inclination angle to the crack plane. Above all, however, the deterioration of bridging capacity results from the damage of the fibres between the crack faces in alternating tension-compression regime. The severity of damage is mostly determined by the number of cycles, compressive stress level, and crack width. The results of the experimental investigations at the micro- and meso-levels were analysed further to establish a multi-scale approach for describing the behaviour of a single crack in the composite. The Non-Simultaneity Hypothesis is proposed, which suggests that the crucial events of fibre bridging action may occur non-simultaneously with increasing crack opening displacement, and the bridging parameters may be reliably determined based on the overall behaviour of a group of specimens. Additionally, the Three-Stage Micromechanics-based Model is developed to describe the bridging behaviour of the fibres with different embedded lengths. The parameters of the model were obtained according to the overall bridging behaviour and the Non-Simultaneity Hypothesis. The parameters were validated by comparing prediction with experiment and observation of bridging behaviour in the tests with varied embedded lengths and multiple fibres. In the framework of the novel concept Criterion-Dependent Reference Volume (CDRV), the effective volume fractions of the fibres assuming non-uniform distribution of the fibres were determined over the length of a hypothetical specimen. The behaviour of a single crack was then predicted at the composite level and compared to the equivalent experimental results. The whole multi-scale approach manifests a considerable capability for analysing the behaviour of Fibre-Reinforced, Cement-based Composite (FRCC). Finally, the concept of Representative Continuum with Predetermined Cracking Sequence (RCPCS) is briefly explained for describing the stress-strain behaviour of SHCC in further development of the multi-scale approach. / Beton ist weltweit mit seinen vielfältigen Anwendungsmöglichkeiten zweifelsohne der wichtigste Baustoff. Trotz der vielen Vorteile weist der Beton eine niedrige Zugfestigkeit und ein sprödes Versagen auf. Eine vielversprechende Methode zur Verbesserung dieser stellt seine Bewehrung mit Kurzfasern dar. Mit lediglich ein oder zwei Volumengehalt Prozent von Hochleistungspolymerfasern könnte das Dehnungs-Verfestigungsverhalten (engl.: Strain-hardening behaviour) unter einachsiger Zugbelastung erreicht werden. Allerdings ist das Verhalten des SHCC (engl.: Strain-Hardening Cementitious Composite) abhängig von dem Belastungsregime. Am kritischsten ist das zyklische Zug-Druck-Wechselbelastungsregime, denn dadurch wird kein duktiles Verhalten nach nur mehreren hundert Zyklen möglich sein, weil eine starke Degradation des Faserüberbrückungsvermögens stattfindet. Diese Dissertation beschreibt die Ergebnisse von experimentellen Untersuchungen des Überbrückungsverhaltens der Polymerfasern in SHCC mit dem Schwerpunkt Zug-Druck-Wechselbelastung. Außerdem umfassen die Untersuchungen monotone Belastung. Das experimentelle Programm enthält Faserzugversuche, einseitige- und zweiseitige Einzelfaserauszugsversuche sowie mikroskopische Analysen an den Probekörpern nach den Experimenten. Das Überbrückungs- und Auszugsverhalten der einzelnen PVA-Faser eingebettet in einer zementbasierten Matrix wurden ausführlich charakterisiert und mit einem neuen Modell beschrieben. Das „Locking Front Model“ erläutert spezifische Phänomene des Zusammenspiels der PVA-Faser und Matrix nach der vollen Ablösung. Zusätzlich wurden die Mechanismen der Zusammenwirkung und Schädigungen unter zyklischer Belastung dargestellt. Die Schädigungsarten sind abhängig von den verschiedenen Parametern wie z. B. Faserwinkel zur Rissebene. Vor allem resultierte die Verschlechterung der Überbrückungseigenschaften aus den Schädigungen der Faser zwischen den Rissebenen im Zug-Druck-Wechselbelastungsregime. Die Intensität der Schädigungen ist meistens mit Zyklenanzahl, zyklischer Druckbelastung und Rissbreiten korreliert. Die Ergebnisse der experimentellen Untersuchungen auf der Mikro- sowie Mesoebene wurden weiter ausgewertet, um einen Multiskalenansatz zur Bestimmung des Verhaltens eines einzelnen Risses im Werkstoff zu schaffen. Die „Non-Simultaneity Hypothese“ wurde vorgeschlagen, welche aussagt, den entscheidenden Vorgänge des Überbrückungsverhaltens der Fasern möglicherweise nicht gleichzeitig bei Vergrößerung der Rissöffnung auftreten. Deswegen sollten die Überbrückungsparameter am besten basierend auf dem allgemeinen Verhalten von vielen Proben in einer Gruppe bestimmt werden. Außerdem wurde das „Three-Stage Model“ zur Bestimmung des Überbrückungsverhaltens der Fasern mit verschiedenen Einbettungslängen entwickelt. Die Parameter des Modells wurden basierend auf dem allgemeinen Überbrückungsverhalten und der „Non-Simultaneity Hypothese“ bestimmt. Dann werden diese Parameter mit dem Überbrückungsverhalten anderer Einbettungslängen oder multipellen Fasern validiert. Im Rahmen des neuen Konzeptes, „Criterion-Dependent Reference Volume (CDRV)“, werden der effektive Volumenanteil der Faser in der Länge einer hypothetischen Probe aus Faserbeton mit ungleichmäßiger Faserverteilung bestimmt. Das Verhalten eines einzelnen Risses wird dann auf der Werkstoffebene bestimmt und mit den experimentellen Ergebnissen verglichen. Der gesamte Multiskalenansatz manifestiert wesentliche Fähigkeit zur Analyse des Verhaltens von Faserbeton. Schließlich wird ein neues Konzept, „Representative Continuum with Predetermined Cracking Sequence (RCPCS)“, zur Bestimmung der Spannungs-Dehnungsbeziehung des hochduktilen Betons (SHCC) als zukünftige Entwicklungsmöglichkeit des vorliegenden Multiskalenansatzes kurz vorgestellt.

Page generated in 0.037 seconds