• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural behaviour of two-way fibre reinforced composite slabs

Huang, Da January 2004 (has links)
Innovative new flooring systems utilising lightweight fibre reinforced polymer composite materials may have the significant potential to offer both economic and performance benefits for infrastructure asset owners compared to conventional concrete and steel systems. Over recent years, a range of prototype floor systems using fibre reinforced polymer composites have been developed by researchers at the University of Southern Queensland. However before such structural systems can be widely adopted by industries, fundamental understanding of their behaviour must be improved. Such work will allow for the development of new design and analysis procedures which will enable engineers to efficiently and accurately design and analyse such structures. This dissertation presents an investigation into a new two-way fibre reinforced composite floor slab system. The proposed new two-way slab system is, in essence, a sandwich structure with an innovative hollow core made from a castable particulate filled resin system. The key focus of this dissertation is the development of a new analysis tool to analyse the two-way fibre reinforced composite slab and facilitate subsequent parametric studies into slab configurations for concept refinement. The detailed 3D finite element analyses and experimental investigations are performed to verify the new analysis tool, and provide more detailed insight into the structural behaviour of this new two-way fibre reinforced composite slab. Comparisons with detailed 3D FEA and experiments illustrate that the simplified analysis tool is capable of providing sufficient accuracy for the preliminary analysis of a slab structure. Moreover, the 3D finite element analyses agree well with the experiments, and it is concluded that the behavioural responses of the proposed new slab structure can be reliably predicted. The experimental results show that this new slab concept exhibits quite a robust static behaviour and is likely to have a robust fatigue performance.
2

Experimental Evaluation of the Bond Dependent Coefficient and Parameters which Influence Crack Width in GFRP Reinforced Concrete

McCallum, Brittany 28 March 2013 (has links)
Reinforcement of concrete flexural components has been traditionally provided by steel rebar; however, durability concerns and life maintenance costs of this product have powered the emergence of fibre reinforced polymers (FRP) as reinforcement in concrete. FRP products hold tremendous promise but their application can be constrained due to design challenges resulting from a reduced modulus of elasticity. The ability to meet serviceability behavior, such as crack width and deflection, is commonly the limiting factor for design. Therefore, the area of FRP reinforcement provided is often greater than the amount required for strength alone and this has significant impacts on the project economics. The bond dependent coefficient (kb) of FRP is required for serviceability design purposes in order to account for the bonding capability of FRP to concrete. The values of this coefficient reported in experimental studies are highly variable, resulting in unreliable crack response predictions. Therefore, a more consistent interpretation and calculation must be found for the bond dependent coefficient due to its critical importance in design. The bond dependent coefficient, as well as physical parameters which influence crack width in GFRP reinforced concrete, were investigated experimentally in this study using a total of 33 specimens. The test procedure was taken from a procedure being developed by the American Concrete Institute (ACI) Committee 440 and was evaluated and modified as required during testing. Phase I testing was used to investigate and determine the physical parameters which had the most significant influence on cracking behaviour and bonding capability. Using significant findings from Phase I, Phase II testing was structured to focus on the interpretation of the bond dependent coefficient and the statistical variation in a set of 5 identical test specimens. Current design equations, as recommended by ACI 440.1R-06 and CHBDC CAN/CSA-S6-06, were used for the calculation of the bond dependent coefficient for all specimens. Interpretation of the bond dependent coefficient was considered using the stress-level approach and newly developed slope approach. Results of the study indicated that the high variability of kb was likely due to its interpretation. Current design equations force a zero intercept, neglecting the fact that concrete does not crack immediately upon loading. In addition, clear definitions of service stress and maximum crack width are ambiguous, further complicating the calculation of the bond dependent coefficient. This resulted in a range of kb values for a given beam despite the fact that kb is inherently a material property of the bar. The behaviour of specimens following load cycling was also very different than the initial loading cycle and consequently, kb was also significantly different. As structures in the field will be subjected to continual loading and unloading, the effect of cyclic loading becomes a consideration in the calculation of kb.
3

Performance evaluation of RC flexural elements strengthened by advanced composites

Andreou, Eftychia January 2002 (has links)
The flexural performance of composite systems made of reinforced concrete, Fibre Reinforced Polymers (FRPs) and adhesives was studied during the current research. The experimental investigation was principally concentrated on the potential use of Kevlar® 49 (aramid fibre) for RC beam strengthening. The main aims of research have been; (a) to investigate the relative merits of using Aramids in comparison to other FRPs, (b) strength optimisation of systems to prevent excessive losses of ductility, (c) to examine the failure mode and crack patterns, together with salient strength factors at ultimate limit state and (d) to carry out analytical modelling using a commercial FE package. The experimental investigation comprised of testing 55 simply supported RC beams of either 1.5m or 2.6m length. In addition to the parametric studies included in points (a)-(d) above (to assess the section characteristics), further experimentation was conducted to investigate the beam performance by varying the factors of; (e) beam shear span, (f) FRP anchorage length, (g) concrete surface preparation, (h) FRP end-anchoring, (i) beam precracking, (j) introduction of air-voids within the bond line of FRP/concrete, (k) influence of cyclic loading and, (1) exposure to aggressive environment. The results from current tests confirm elements of reports from other researchers (by thorough review of literature) that all FRPs have great potential for flexural strengthening of RC members. This is valid even in cases where additional environmental degradation and/or cracking (due to serviceability loads), had taken place. Aramid fibres were found to result in favourable outcomes concerning both strength and ductility enhancements. It was determined, both from experiments and non-linear modelling, that the amount of FRP fibre content is an important factor in every strengthening application. Experimentation showed that depending on the existing condition of the structure (concrete strength, internal reinforcement ratio, section dimensions, degradation level and load configuration), there seems to be a unique level of optimum fibre content. The FRP levels in excess of the optimum were seen to lead to premature brittle tearing-off failure modes. It was also found that to prevent premature beam failure (due to incompatibility of stress at concrete and FRP interface), a maximum possible anchorage length should be considered in order to deliver an optimum section performance. The results from the analytical modelling indicated a most satisfactory agreement with the experimental data after the initial mechanical properties were calibrated. It was found that actual representation of material properties (e.g. steel constitutive law) are of great significance, for an accurate modelling of RC element loaded behaviour. The bond developed between the FRP and concrete is one of the key parameters for achieving good performance of the systems. It was determined that concrete surface preparation and priming is beneficial, while the introduction of air-voids due to poor workmanship can reduce the section load bearing capabilities. Cyclic loading on FRP strengthened sections was found to curtail the full rotational capacity utilisation of the beam. However, even the above mentioned curtailed behaviour was more advantageous than cyclically loaded beam performance without FRP strengthening.

Page generated in 0.082 seconds