• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Manufacturing Three-dimensional Carbon-fibre Preforms for Aerospace Composites

Drivas, Thanos January 2014 (has links)
Carbon fibre reinforced polymer matrix composites (CF PMCs) are increasingly used in state-of-the-art aerospace applications. Aerospace manufacturers favour components made of CF PMCs over those made of traditional metallic alloys because of their light weight and corrosion resistance, which lead to significant improvements in fuel consump- tion, increased payload capability, and reduced maintenance and inspection costs. How- ever, manufacturing of CF PMC components is performed differently than traditional material in all stages – design, prototyping and production – and therefore, many com- mercial manufacturers have only recently begun producing components with CF PMCs. The first half of this thesis was written as a contribution to the CRIAQ COMP-501 project, which focusses on investigating the cost-effective procurement of airframe com- ponents that are manufactured from final-thickness, net-shaped, and through-thickness reinforced CF preforms. Reinforcement preforms were assembled from commercial 2D woven fabric using stacks of various configurations of structural through-thickness CF stitch. The contribution herein provides the results obtained from investigations into the mechanical behaviour of the relevant reinforcements, when subjected to pre-infusion op- erations typical to RTM VARTM; mechanical behaviour in compaction, shear (draping) and bending (forming). The second half of this thesis presents the major developments which were made to an alternative process for producing thick 3D preforms with great versatility, a process originally proposed as a candidate for supplying preforms to the COMP-501 project. This process interfaces a proprietary kinematic drape optimization (CAD) software with proprietary automated dry fibre placement assembly (CAM) machinery to produce vari- able or final-thickness reinforcements which are highly-drapable and can lay steered tow yarns.

Page generated in 0.3148 seconds