• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 21
  • 9
  • 9
  • 7
  • 6
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 147
  • 35
  • 33
  • 33
  • 29
  • 23
  • 20
  • 20
  • 19
  • 19
  • 18
  • 16
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Regulation of expression of alternatively-spliced human fibronectin IIICS mRNA variants

Hershberger, Richard Paul January 1991 (has links)
No description available.
32

Function of Frizzled-7/Syndecan-4 Signaling in Foregut Organ Development

Zhang, Zheng 09 June 2015 (has links)
No description available.
33

Spontaneous Unfolding and Refolding of FNIII Domains Assayed by Thiol Exchange

Shah, Riddhi January 2016 (has links)
<p>Fibronectin (FN) is a large extracellular matrix (ECM) protein that is made up of</p><p>type I (FNI), type II (FNII), & type III (FNIII) domains. It assembles into an insoluble</p><p>supra-­‐‑molecular structure: the fibrillar FN matrix. FN fibrillogenesis is a cell‐‑mediated process, which is initiated when FN binds to integrins on the cell surface. The FN matrix plays an important role in cell migration, proliferation, signaling & adhesion. Despite decades of research, the FN matrix is one of the least understood supra-­‐‑molecular protein assemblies. There have been several attempts to elucidate the exact mechanism of matrix assembly resulting in significant progress in the field but it is still unclear as to what are FN-­‐‑FN interactions, the nature of these interactions and the domains of FN that</p><p>are in contact with each other. FN matrix fibrils are elastic in nature. Two models have been proposed to explain the elasticity of the fibrils. The first model: the ‘domain unfolding’ model postulates that the unraveling of FNIII domains under tension explains fibril elasticity.</p><p>The second model relies on the conformational change of FN from compact to extended to explain fibril elasticity. FN contain 15 FNIII domains, each a 7-­‐‑strand beta sandwich. Earlier work from our lab used the technique of labeling a buried Cys to study the ‘domain unfolding’ model. They used mutant FNs containing a buried Cys in a single FNIII domain and found that 6 of the 15 FNIII domains label in matrix fibrils. Domain unfolding due to tension, matrix associated conformational changes or spontaneous folding and unfolding are all possible explanation for labeling of the buried Cys. The present study also uses the technique of labeling a buried Cys to address whether it is spontaneous folding and unfolding that labels FNIII domains in cell culture. We used thiol reactive DTNB to measure the kinetics of labeling of buried Cys in eleven FN III domains over a wide range of urea concentrations (0-­‐‑9M). The kinetics data were globally fit using Mathematica. The results are equivalent to those of H-­‐‑D exchange, and</p><p>provide a comprehensive analysis of stability and unfolding/folding kinetics of each</p><p>domain. For two of the six domains spontaneous folding and unfolding is possibly the reason for labeling in cell culture. For the rest of the four domains it is probably matrix associated conformational changes or tension induced unfolding.</p><p>A long-­‐‑standing debate in the protein-­‐‑folding field is whether unfolding rate</p><p>constants or folding rate constants correlate to the stability of a protein. FNIII domains all have the same ß sandwich structure but very different stabilities and amino acid sequences. Our study analyzed the kinetics of unfolding and folding and stabilities of eleven FNIII domains and our results show that folding rate constants for FNIII domains are relatively similar and the unfolding rates vary widely and correlate to stability. FN forms a fibrillar matrix and the FN-­‐‑FN interactions during matrix fibril formation are not known. FNI 1-­‐‑9 or the N-­‐‑ terminal region is indispensible for matrix formation and its major binding partner has been shown to be FNIII 2. Earlier work from our lab, using FRET analysis showed that the interaction of FNI 1-­‐‑9 with a destabilized FNIII 2 (missing the G strand, FNIII 2ΔG) reduces the FRET efficiency. This efficiency is restored in the presence of FUD (bacterial adhesion from S. pyogenes) that has been known to interact with FNI 1-­‐‑9 via a tandem ß zipper. In the present study we</p><p>use FRET analysis and a series of deletion mutants of FNIII 2ΔG to study the shortest fragment of FNIII 2ΔG that is required to bind FNI 1-­‐‑9. Our results presented here are qualitative and show that FNIII 2ΔC’EFG is the shortest fragment required to bind FNI 1-­‐‑9. Deletion of one more strand abolishes the interaction with FNI 1-­‐‑9.</p> / Dissertation
34

Interplay of the osmotic environment and a fibronectin fragment in intervertebral disc cell metabolism

Cui, Ying January 2011 (has links)
Breakdown of the disc extracellular matrix is thought to arise from increased activity of matrix metalloproteinases (MMPs). Aggrecan, one of the major disc matrix macromolecules, is degraded through action of MMPs and aggrecanases and its concentration falls early in the degeneration process. Loss of the constituent glycosaminoglycans (GAGs), which are osmotically active, leads to a decrease in osmotic pressure and subsequently to a fall in tissue hydration. Apart from the major biomechanical consequences, fall in extracellular osmolarity is known to influence cell function. Apart from aggrecan, other macromolecules such as fibronectin are also broken down by MMPs. Fibronectin fragments (Fnfs) have been identified in degenerate discs. Such Fnfs have been found to stimulate production and activity of MMPs in articular cartilage but little is known about the effect of these fragments on disc cells. The aim of the work was thus to determine whether Fnf stimulated expression of MMPs and hence induced aggrecan breakdown and loss in the disc and whether extracellular osmolarity influenced this potential response. NP cells or explants were harvested from adult bovine caudal discs. They were cultured in DMEM culture medium over a range of osmolarities with or without Fnf treatment. Profiles of gene expression of MMPs and their inhibitors and effect of changes in osmolarity on expression of selected MMPs were determined. The effect of Fnf on responses of cells and tissue explants from the central region of the disc, the nucleus pulposus (NP) and the role of changes in extracellular osmolarity in relation to GAG loss and expression of selected MMPs was then examined both at the protein level and by gene profiling using a microarray. My results showed that expression of MMPs by disc cells is regulated by extracellular osmolarity rather than the 30 kD Fnf, with the level of some MMPs secreted by disc cells and involved in degradation of disc matrix rising as osmolarity falls. These results could explain in part the finding that MMP expression increases with degree of disc degeneration i.e. with loss of aggrecan and fall in extracellular osmolarity. These also suggested that a fall in osmolarity could induce a degenerative cascade with proteolytic digestion of aggrecan leading to a fall in osmolarity and hence a further increase in proteinase expression and matrix degradation.
35

Bi-directional signaling between melanoma and the microenvironment generates a protective niche that mediates therapeutic escape

Fedorenko, Inna 08 July 2014 (has links)
Very few cancer patients are cured through drug therapy alone, with the majority exhibiting acquired resistance. To date, most studies of therapeutic escape have focused upon tumor-intrinsic mechanisms of drug resistance with little attention paid to the role of normal host cells in preventing complete tumor eradication. In the present study we implicate co-operative bi-directional signaling between melanoma cells and fibroblasts in the generation of a pro-survival niche that mediates drug resistance. Mass-spectrometry based phosphoproteomics was used to show that BRAF inhibition and chemotherapy drugs enhanced the survival of both melanoma cells and fibroblasts through the induction of fibronectin (FN)/integrin α5β1 signaling. Immunohistochemical staining confirmed the induction of FN in mouse xenografts and human melanoma specimens following BRAF inhibitor treatment. Adhesion to FN amplified the adaptive EGFR, HER3 and c-MET receptor tyrosine kinase (RTK) signals required for PI3K/AKT/Mcl-1-mediated melanoma cell survival when BRAF was inhibited. At the same time, BRAF inhibition led, directly and indirectly, to the paracrine release of HGF and neuregulin from fibroblasts, with TGF-β release from the melanoma cells increasing both fibroblast differentiation and survival. Although dual inhibition of RTKs and BRAF did not reverse host-mediated resistance, therapeutic escape was overcome through combined BRAF/PI3K inhibition, suggesting the PI3K/AKT pathway to be a common signaling vulnerability in microenvironment-mediated drug resistance. Our work suggests that durable responses to targeted therapies will only be achieved through dual targeting of the tumor and the adaptive host responses to therapy. These findings are especially important for a cancer such as melanoma, where as few as one cell can repopulate the entire tumor in vivo.
36

Coating Collagen Modules with Fibronectin Increases in vivo HUVEC Survival and Vessel Formation through the Suppression of Apoptosis

Cooper, Thomas 13 January 2010 (has links)
Modular tissue engineering is a novel approach to creating scalable, self-assembling three-dimensional tissue constructs with inherent vascularisation. Under initial methods, the subcutaneous implantation of human umbilical vein endothelial cell (HUVEC)-covered collagen modules in immunocompromised mice resulted in significant host inflammation and limited HUVEC survival. Subsequently, a minimally-invasive injection technique was developed to minimize surgery-related inflammation, and cell death was attributed to extensive apoptosis within 72 hours of implantation. In confirmation of in vitro results, coating collagen modules with fibronectin (Fn) was shown in vivo to reduce short-term HUVEC apoptosis by nearly 40%, while increasing long-term HUVEC survival by 30% to 45%. Consequently, a 100% increase in the number of HUVEC-lined vessels was observed with Fn-coated modules, as compared to collagen-only modules, at 7 and 14 days post-implantation. Furthermore, vessels appeared to be perfused with host erythrocytes by day 7, and vessel maturation and stabilization was evident by day 14.
37

Coating Collagen Modules with Fibronectin Increases in vivo HUVEC Survival and Vessel Formation through the Suppression of Apoptosis

Cooper, Thomas 13 January 2010 (has links)
Modular tissue engineering is a novel approach to creating scalable, self-assembling three-dimensional tissue constructs with inherent vascularisation. Under initial methods, the subcutaneous implantation of human umbilical vein endothelial cell (HUVEC)-covered collagen modules in immunocompromised mice resulted in significant host inflammation and limited HUVEC survival. Subsequently, a minimally-invasive injection technique was developed to minimize surgery-related inflammation, and cell death was attributed to extensive apoptosis within 72 hours of implantation. In confirmation of in vitro results, coating collagen modules with fibronectin (Fn) was shown in vivo to reduce short-term HUVEC apoptosis by nearly 40%, while increasing long-term HUVEC survival by 30% to 45%. Consequently, a 100% increase in the number of HUVEC-lined vessels was observed with Fn-coated modules, as compared to collagen-only modules, at 7 and 14 days post-implantation. Furthermore, vessels appeared to be perfused with host erythrocytes by day 7, and vessel maturation and stabilization was evident by day 14.
38

Analysis of the Streptococcal Hemoprotein Receptor: A Role in Virulence and Host Defense

Huang, Ya-Shu 01 May 2012 (has links)
Group A streptococcus (GAS) is an important pathogen that produces a wide spectrum of suppurative infections and autoimmune sequelae in humans, ranging from less complex pharyngitis, impedigo to more severe manifestations such as necrotizing fasciitis, toxic shock syndrome, rheumatic fever and glomerulonephritis. The worldwide burden of GAS infections and sequelae is considerable, but an immunization program that defends against the hyper-variable GAS is missing. The streptococcal hemoprotein receptor (Shr), is an iron-regulated protein involved in heme acquisition. An unspecified region in the amino terminus of Shr mediates the interactions with hemoglobin and two protein modules named NEAT1 and NEAT2 bind heme. In this study, we analyzed the molecular structure and function of Shr, investigated its antigenic properties and role in GAS disease production. We demonstrated that Shr is a new type of GAS adhesin that contributes to the pathogen interactions with extracellular matrix (ECM) proteins. Shr enabled bacterial adherence to host cells and was important for GAS virulence in vivo. Immunizations with Shr protein by intraperitoneal or intranasal administration conferred resistance to systemic GAS challenge in mice. Shr antiserum allowed bacterial opsonization and defended against GAS diseases in a murine model for passive vaccination. Studies with isolated Shr domains localized ECM-binding to the NEAT domains and showed that most of the protein is exposed on the bacterial surface. In addition, Shr N-terminal region and both of the NEAT modules elicited strong antibody response in rabbits. In conclusion, Shr is a protective antigen that contributes to GAS pathogenesis by facilitating both heme uptake and bacterial adherence. Since Shr is conserved among GAS strains and other pyogenic streptococci, this study demonstrates that Shr may be used to develop a vaccine against GAS strains and related pathogens.
39

Engineering surfaces to direct integrin binding and signaling to promote osteoblast differentiation

Keselowsky, Benjamin George 15 March 2004 (has links)
Cell adhesion to proteins adsorbed onto implanted surfaces is particularly important to host responses in biomedical and tissue engineering applications. Biomaterial surface properties influence the type, quantity and functional presentation (activity) of proteins adsorbed upon contact with physiological fluids, and modulate subsequent cell response. Cell adhesion to extracellular matrix proteins (e.g. fibronectin) is primarily mediated by the integrin family of cell-surface receptors. Integrins not only anchor cells, supporting cell spreading and migration, but also trigger signals that regulate survival, proliferation and differentiation. A fundamental understanding of the adhesive interactions at the biomaterial interface is critical to the rational design of biomaterial surfaces. Using model surfaces of self-assembled monolayers of alkanethiols on gold presenting well-defined surface chemistries (CH3, OH, COOH, NH2), we investigated the effects of surface chemistry on osteoblastic differentiation. We report that surface chemistry effectively modulates fibronectin adsorption, integrin binding, focal adhesion assembly and signaling to direct the osteoblast cellular functions of adhesion strength, gene expression and matrix mineralization. Specifically, surfaces presenting OH and NH2 functionalities provide enhanced functional presentation of adsorbed fibronectin, promoting specificity of integrin binding as well as elevating focal adhesion assembly and signaling. Furthermore, the OH and NH2 surfaces supported elevated levels of osteoblast differentiation as evidenced by osteoblast-specific gene expression and matrix mineralization. These results contribute to the development of design principles for the engineering of surfaces that direct cell adhesion for biomedical and tissue engineering applications. In particular, the understanding provided by this analysis may be useful in the engineering of surface properties for bone tissue repair and regeneration.
40

Surface-directed assembly of fibrillar extracellular matrices

Capadona, Jeffrey R. 21 April 2005 (has links)
Biologically-inspired materials have emerged as promising substrates for enhanced repair in various therapeutic and regenerative medicine applications, including nervous and vascular tissues, bone, and cartilage. These strategies focus on the development of materials that integrate well-characterized domains from biomacromolecules to mimic individual functions of the extracellular matrix (ECM), including cell adhesive motifs, growth factor binding sites, and protease sensitivity. A vital property of the ECM is the fibrillar architecture arising from supramolecular assembly. For example, the fibrillar structure of fibronectin (FN) matrices modulates cell cycle progression, migration, gene expression, cell differentiation, and the assembly of other matrix proteins. Current biomaterials do not actively promote deposition and assembly of ECM. In this research, we describe the rational design and investigation of non-fouling biomimetic surfaces in which an oligopeptide sequence (FN13) from the self-assembly domain of FN is tethered to non-fouling substrates. This surface modification directs cell-mediated co-assembly of robust fibrillar FN and type I collagen (COL) matrices reminiscent of ECM, and increases in cell proliferation rates. Furthermore, the effect of this peptide is surface-directed, as addition of the soluble peptide has no effect on matrix assembly. We have also identified a critical surface density of the immobilized peptide to elicit the full activity. These results contribute to the development and design of biomimetic surface modifications that direct cell function for biomedical and biotechnology applications.

Page generated in 0.0558 seconds