• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical modelling of tonometry

Gonzalez Castro, Gabriela, Fitt, A.D. January 2004 (has links)
No / A mathematical model which describes the functioning of a Goldmann-type applanation tonometer is proposed in order in order to verify the validity of the Imbert-Fick principle. The spherical axi-symmetric elastic equilibrium equation and solved using a Love stress function. Conclusions are drawn regarding the circumstances under which the Imbert-Fick principle may or may not be vaild.
2

A Novel Iterative Method for Non-invasive Measurement of Cardiac Output

Klein, Michael 29 November 2013 (has links)
This thesis provides a first description and proof-of-concept of iterative cardiac output measurement (ICO) – a respiratory, carbon-dioxide (CO2) based method of measuring cardiac output (CO). The ICO method continuously tests and refines an estimate of the CO by attempting to maintain the end-tidal CO2 constant. To validate the new method, ICO and bolus thermodilution CO (TDCO) were simultaneously measured in a porcine model of liver transplant. Linear regression analysis revealed the equation ICO = 0.69•TDCO + 0.65 with a Pearson correlation coefficient of 0.89. Analysis by the method of Bland and Altman showed a bias of -0.2 L/min with 95% limits of agreement from -1.1 to 0.7 L/min. The trending ability of ICO was determined using the half-circle polar plot method where the mean radial bias, the standard deviation of the polar angle, and 95% confidence interval of the polar angle were -8º, ±17º, and ±33º, respectively.
3

A Novel Iterative Method for Non-invasive Measurement of Cardiac Output

Klein, Michael 29 November 2013 (has links)
This thesis provides a first description and proof-of-concept of iterative cardiac output measurement (ICO) – a respiratory, carbon-dioxide (CO2) based method of measuring cardiac output (CO). The ICO method continuously tests and refines an estimate of the CO by attempting to maintain the end-tidal CO2 constant. To validate the new method, ICO and bolus thermodilution CO (TDCO) were simultaneously measured in a porcine model of liver transplant. Linear regression analysis revealed the equation ICO = 0.69•TDCO + 0.65 with a Pearson correlation coefficient of 0.89. Analysis by the method of Bland and Altman showed a bias of -0.2 L/min with 95% limits of agreement from -1.1 to 0.7 L/min. The trending ability of ICO was determined using the half-circle polar plot method where the mean radial bias, the standard deviation of the polar angle, and 95% confidence interval of the polar angle were -8º, ±17º, and ±33º, respectively.

Page generated in 0.0691 seconds