• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physique, chimie et biologie de la filamentation d’impulsions laser femtosecondes en solutions aqueuses / Physics, chemitry and biology of femtosecond laser pulses filamentation in aqueous solutions

Belmouaddine, Hakim January 2017 (has links)
La propagation d’une impulsion laser femtoseconde dans un milieu condensé trans- parent tel que l’eau conduit, dans les conditions appropriées, à la manifestation de phénomènes d’optiques non linéaires regroupés sous le terme de filamentation laser. Le faisceau laser correspondant voit alors sa propagation métamorphosée sous la forme de filaments de lumière intense. Au coeur de ces filaments, l’irradiance considérable provoque l’ionisation des atomes du milieu et la génération de plasmas. Produit de manière spontanée et auto-régulée, ces plasmas ont la particularité de combiner une densité importante d’événements d’ionisation avec des effets thermo-mécaniques minimisés. Leurs propriétés intrinsèques font de ces plasma une source d’ionisation singulière tout particulièrement en ce qui concerne les sciences qui s’intéressent à l’étude des effets des radiations ionisantes. Entre autres, les sciences des radiations étudient la physique, la chimie et la biologie de l’action des rayonnements ionisants sur des systèmes d’intérêt biologique. Dans ce contexte, cette dissertation s’intéresse à la filamentation d’impulsions laser femtosecondes proches infrarouges en solution aqueuse. L’eau représentant la compo- sante majeure des systèmes d’intérêt biologique, une solution aqueuse constitue une approximation satisfaisante d’un échantillon biologique plus concret. Tout d’abord, l’étude de la physique de la filamentation laser a permis de mieux appréhender l’interaction des impulsions assujetties au processus de filamentation dans l’eau, primordiale pour l’identification des conditions d’irradiation propices à une meilleure maîtrise des conséquences de la génération des plasmas photo-induits. Les effets d’un rayonnement ionisant en solution aqueuse sont notamment véhiculés au travers de la chimie déclenchée par l’ionisation de l’eau, qui implique une interaction entre les espèces réactives produites et les solutés dilués en solutions. L’étude des conséquences de l’irradiation laser sur des solutés inorganiques a permis d’élucider la nature de cette chimie sous rayonnements. De surcroît, il a été démontré comment la malléabilité qu’offre l’utilisation d’un laser se répercute sur la capacité à moduler les conséquences de l’irradiation. Enfin, l’étude a été étendue à l’irradiation de molécules d’ADN diluées en solution aqueuse. L’analyse détaillée des dommages occasionnés à l’ADN a permis de mettre en exergue la présence de lésions complexes caractéristiques d’une irradiation par un faisceau intense de rayonnements ionisants. / Abstract : The present study is part in a new framework in radiobiology, introduced a decade ago: femtosecond laser-induced "cold" low density plasmas for the highly localized deposition of energy at sub-cellular scales in systems of biological interest. Since in aqueous solutions the action of such plasmas is equivalent to the deposition of a dose by ionizing radiation, plasma-mediated effects on solutes involve the radiation chemistry of water. This chemistry corresponds to the interaction of solutes with radical oxygen species as well as with secondary low energy electrons, produced by the plasma. Here, to better understand the radiation chemistry underlying the generation of low density plasmas in aqueous environments, we harnessed the multi-filamentation of powerful femtosecond laser pulses as a way to achieve a self-regulated production of spatially homogeneous low density plasma foci in water. The "cold" low density plasma micro-channels generated by the filamentation of the femtosecond laser pulses in aqueous solutions constitute a source of dense ionization. We studied the femtosecond laser filamentation in inorganic solutions to account for the radiation-assisted chemistry triggered by laser ionization in aqueous environment. We highlighted that the trivial optical control of the spatio-temporal distribution of light filaments in the irradiated sample resulted in the modulation of the corresponding radical chemistry. We concluded that these spatially and temporally resolved plasmas could be developed as a tool for the unprecedented control of chemistry under ionizing radiation. The addition of a spatial light modulator to control the filamentation process improves significantly our control on the spatio-temporal distribution of the laser-induced plasma channels. From a bundle of entangled random low density plasma channels, usually produced by the non-linear propagation of the powerful laser beam, we were able to obtain a programmable matrix of mono-filaments to achieve a more pervasive and homogeneous energy deposition. This method of irradiation allowed us to perform a detailed analysis to determine, quantify and compare the consequences of the laser irradiation with those of a conventional source of ionizing radiation (Gamma-Rays) on organic molecules (e.g. DNA) desolved in aqueous solutions. We showed that each filament behaves as an independent intense micro beam of ionizing radiation, that is capable of inducing complex DNA damage. We believe that a better understanding of the laser-induced plasma-mediated effects in aqueous solutions of biological interest will further the adoption of such laser-based ionisation sources, and that this unorthodox approach to radiation sciences will open new fields of investigation at the frontiers of radiation and laser-driven chemistry. Moreover, one of the principal conclusions of this thesis argues in favour of a shift of paradigm in radiation sciences, shuch that the consequences of ionising radiation would not only be considered for their injurious effects but also for the fine modulation of the functions of systems of biological interest. This sentiment paves the way for new emerging techniques and applications in biomedical fields.

Page generated in 0.1766 seconds