• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 32
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 146
  • 146
  • 80
  • 71
  • 66
  • 63
  • 50
  • 30
  • 24
  • 23
  • 21
  • 20
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

An experimental and numerical study of secondary flows and film cooling effectiveness in a transonic cascade

Kullberg, James C. 01 May 2011 (has links)
Experimental tests on a transonic annular rig are time-consuming and expensive, so it is desirable to use experimental results to validate a computational model which can then be used to extract much more information. The purpose of this work is to create a numerical model that can be used to simulate many different scenarios and then to apply these results to experimental data.; In the modern world, gas turbines are widely used in aircraft propulsion and electricity generation. These applications represent a massive use of energy worldwide, so even a very small increase in efficiency would have a significant beneficial economic and environmental impact. There are many ways to optimize the operation of a gas turbine, but a fundamental approach is to increase the turbine inlet temperature to increase the basic thermodynamic efficiency of the turbine. However, these temperatures are already well above the melting temperature of the components. A primary cooling methodology, called film cooling, creates a blanket of cool air over the surface and is an effective way to help protect these components from the hot mainstream gasses. This paper focuses on the effect of the film holes upstream of the first row of blades in the turbine because this is the section that experiences the highest thermal stresses. Many factors can determine the effectiveness of the film cooling, so a complete understanding can lead to effective results with the minimum flow rate of coolant air. Many studies have been published on the subject of film cooling, but because of the difficulty and expense of simulating turbine realistic conditions, many authors introduce vast simplifications such as low speed conditions or linear cascades. These simplifications do not adequately represent the behavior of a turbine and therefore their results are of limited use. This study attempts to eliminate many of those simplifications. The test rig used in this research is based on the NASA-GE E³ design, which stands for Energy Efficient Engine. It was introduced into the public domain to provide an advanced platform from which open-literature research could be performed.
92

Toward increasing performance and efficiency in gas turbines for power generation and aero-propulsion unsteady simulation of angled discrete-injection coolant in a hot gas path crossflow

Johnson, Perry L. 01 January 2011 (has links)
This thesis describes the numerical predictions of turbine film cooling interactions using Large Eddy Simulations. In most engineering industrial applications, the Reynolds-Averaged Navier-Stokes equations, usually paired with two-equation models such as k-Greek lowercase letter epsilon] or k-Greek lowercase letter omega], are utilized as an inexpensive method for modeling complex turbulent flows. By resolving the larger, more influential scale of turbulent eddies, the Large Eddy Simulation has been shown to yield a significant increase in accuracy over traditional two-equation RANS models for many engineering flows. In addition, Large Eddy Simulations provide insight into the unsteady characteristics and coherent vortex structures of turbulent flows. Discrete hole film cooling is a jet-in-cross-flow phenomenon, which is known to produce complex turbulent interactions and vortex structures. For this reason, the present study investigates the influence of these jet-crossflow interactions in a time-resolved unsteady simulation. Because of the broad spectrum of length scales present in moderate and high Reynolds number flows, such as the present topic, the high computational cost of Direct Numerical Simulation was excluded from possibility.
93

Effects of Film Cooling on Turbine Blade Tip Flow Structures and Thermal Loading

Christensen, Louis Edward 24 August 2022 (has links)
No description available.
94

Comparison Of Square-hole And Round-hole Film Cooling: A Computational Study

Durham, Michael Glenn 01 January 2004 (has links)
Film cooling is a method used to protect surfaces exposed to high-temperature flows such as those that exist in gas turbines. It involves the injection of secondary fluid (at a lower temperature than that of the main flow) that covers the surface to be protected. This injection is through holes that can have various shapes; simple shapes such as those with a straight circular (by drilling) or straight square (by EDM) cross-section are relatively easy and inexpensive to create. Immediately downstream of the exit of a film cooling hole, a so-called horseshoe vortex structure consisting of a pair of counter-rotating vortices is formed. This vortex formation has an effect on the distribution of film coolant over the surface being protected. The fluid dynamics of these vortices is dependent upon the shape of the film cooling holes, and therefore so is the film coolant coverage which determines the film cooling effectiveness distribution and also has an effect on the heat transfer coefficient distribution. Differences in horseshoe vortex structures and in resultant effectiveness distributions are shown for circular and square hole cases for blowing ratios of 0.33, 0.50, 0.67, 1.00, and 1.33. The film cooling effectiveness values obtained are compared with experimental and computational data of Yuen and Martinez-Botas (2003a) and Walters and Leylek (1997). It was found that in the main flow portion of the domain immediately downstream of the cooling hole exit, there is greater lateral separation between the vortices in the horseshoe vortex pair for the case of the square hole. This was found to result in the square hole providing greater centerline film cooling effectiveness immediately downstream of the hole and better lateral film coolant coverage far downstream of the hole.
95

Planar Laser Induced Fluorescence Experiments and Modeling Study of Jets in Crossflow at Various Injection Angles

Thompson, Luke 01 January 2015 (has links)
Planar Laser Induced Fluorescence (PLIF) with acetone seeding was applied to measure the scalar fields of an axisymmetric freejet and an inclined jet-in-crossflow as applicable to film cooling. From the scalar fields, jet-mixing and trajectory characteristics were obtained. In order to validate the technique, the canonical example of a nonreacting freejet of Reynolds Numbers 900-9000 was investigated. Desired structural characteristics were observed and showed strong agreement with computational modeling. After validating the technique with the axisymmetric jet, the jet-in-crossflow was tested with various velocity ratios and jet injection angles. Results indicated the degree of wall separation for different injection angles and demonstrate both the time-averaged trajectories as well as select near-wall concentration results for varying jet momentum fluxes. Consistent with literature findings, the orthogonal jet trajectory for varying blowing ratios collapsed when scaled by the jet-to-freestream velocity ratio and hole diameter, rd. Similar collapsing was demonstrated in the case of a non-orthogonal jet. Computational Fluid Dynamic (CFD) simulations using the OpenFOAM software was used to compare predictions with select experimental cases, and yielded reasonable agreement. Insight into the importance and structure of the counter rotating vortex pair and general flow field turbulence was highlighted by cross validation between CFD and experimental results.
96

Study Of Film Cooling Effectiveness: Conical, Trenched And Asymmetrical Shaped Holes

Zuniga, Humberto 01 January 2009 (has links)
Film cooling is a technique whereby air from the compressor stage of a gas turbine engine is diverted for cooling purposes to parts, such as the turbine stage, that operate at very high temperatures. Cooling arrangements include impingement jets, finned, ribbed and turbulated channels, and rows of film cooling holes, all of which over the years have become progressively more complex. This costly, but necessary complexity is a result of the industry's push to run engines at increasingly higher turbine inlet temperatures. Higher temperatures mean higher efficiency, but they also mean that the turbine first stage operates hundreds of degrees Kelvin above the melting point of the metal core of the vanes and blades. Existing cooling technology and materials make it possible to protect these parts and allow them to function for extended periods of time--but this comes at a price: the compressed air that is used for cooling represents a considerable penalty in overall turbine efficiency. The aim of current cooling research is threefold: to improve the protection of components from extreme fluxes in order to extend the life of the parts; to increase the inlet turbine operating temperature; and to reduce the amount of air that is diverted from the compressor for cooling. Current film cooling schemes consist of forcing air through carefully machined holes on a part and ejecting it at an angle with the intent of cooling that part by blanketing the surface downstream of the point of ejection. The last major development in the field has been the use of expanded hole exits, which reduce coolant momentum and allow for greater surface coverage. Researchers and designers are continuously looking for novel geometries and arrangements that would increase the level of protection or maintain it while using less coolant. It was found that the performance of fan-shaped holes inside trenches is actually diminished by the presence of the trench. It is obvious, since the fan diffuses the flow, reducing the momentum of the coolant; the addition of the trench further slows the flow down. This, in turn, leads to the quicker ingestion of the main flow by the jets resulting in lower effectiveness. The next part of the study consisted of systematically increasing the depth of the trench for the fan-shaped holes. The purpose of this was to quantify the effect of the trench on the film cooling effectiveness. It was found that the presence of the trench significantly reduces the film effectiveness, especially for the deeper cases. At the higher blowing ratios, the overall performance of the fans collapses to the same value signifying insensitivity to the blowing ratio. A recent study suggests that having a compound angle could reduce the protective effect of the film due to the elevated interaction between the non-co-flowing coolant jet and the mainstream. Although it has been suggested that a non-symmetric lateral diffusion could mitigate the ill effects of having a compound angle, little has been understood on the effect this non-symmetry has on film cooling effectiveness. The last part of this study investigates the effect of non-symmetric lateral diffusion on film cooling effectiveness by systematically varying one side of a fan-shaped hole. For this part of the study, one of the lateral angles of diffusion of a fan-shaped hole was changed from 5° to 13°, while the other side was kept at 7°. It was found that a lower angle of diffusion hurts performance, while a larger diffusion angle improves it. However, the more significant result was that the jet seemed to be slightly turning. This dissertation investigates such novel methods which one day may include combinations of cylindrical and fan-shaped holes embedded inside trenches, conical holes, or even rows of asymmetric fan-shaped holes. The review of current literature reveals that very few investigations have been done on film cooling effectiveness for uniformly diffusing conical holes. They have been treated as a sort of side novelty since industrial partners often say they are hard to manufacture. To extend our understanding of effectiveness of conical holes, the present study investigates the effect of increasing diffusion angle, as well as the effect of adding a cylindrical entrance length to a conical hole. The measurements were made in the form of film cooling effectiveness and the technique used was temperature sensitive paint. Eight different conical geometries were tested in the form of coupons with rows of holes. The geometry of the holes changed from pure cylindrical holes, a 0° cylindrical baseline, to an 8° pure cone. The coupons were tested in a closed loop wind tunnel at blowing ratios varying from 0.5 to 1.5, and the coolant employed was nitrogen gas. Results indicate that the larger conical holes do, in fact offer appropriate protection and that the holes with the higher expansion angles perform similar to fan-shaped baseline holes, even at the higher blower ratios. The study was also extended to two other plates in which the conical hole was preceded by a cylindrical entry length. The performance of the conical holes improves as a result of the entry length and this is seen at the higher blowing ratios in the form of a delay in the onset of jet detachment. The results of this study show that conical expanding holes are a viable geometry and that their manufacturing can be made easier with a cylindrical entry length, at the same time improving the performance of these holes. This suggests that the jets actually have two regions: one region with reduced momentum, ideal for protecting a large area downstream of the point of injection; and another region with more integrity which could withstand more aggressive main flow conditions. A further study should be conducted for this geometry at compound angles with the main flow to test this theory. The studies conducted show that the temperature sensitive paint technique can be used to study the performance of film cooling holes for various geometries. The studies also show the film cooling performance of novel geometries and explain why, in some cases, such new arrangements are desirable, and in others, how they can hurt performance. The studies also point in the direction of further investigations in order to advance cooling technology to more effective applications and reduced coolant consumption, the main goal of applied turbine cooling research. Trench cooling consists of having film cooling holes embedded inside a gap, commonly called a trench. The walls of this gap are commonly vertical with respect to the direction of the main flow and are directly in the path of the coolant. The coolant hits the downstream trench wall which forces it to spread laterally, resulting in more even film coverage downstream than that of regular holes flush with the surface. Recent literature has focused on the effect that trenching has on cylindrical cooling holes only. While the results indicate that trenches are an exciting, promising new geometry derived from the refurbishing process of thermal barrier ceramic coatings, not all the parameters affecting film cooling have been investigated relating to trenched holes. For example, nothing has been said about how far apart holes inside the trench will need to be placed for them to stop interacting. Nothing has been said about shaped holes inside a trench, either. This dissertation explores the extent to which trenching is useful by expanding the PI/D from 4 to 12 for rows of round and fan holes. In addition the effect that trenching has on fan-shaped holes is studied by systematically increasing the trench depth. Values of local, laterally-averaged and spatially-averaged film cooling effectiveness are reported. It is found that placing the cylinders inside the trench and doubling the distance between the holes provides better performance than the cylindrical, non-trenched baseline, especially at the higher blowing ratios, M > 1.0. At these higher coolant flow rates, the regular cylindrical jets show detachment, while those in the trench do not. They, in fact perform very well. The importance of this finding implies that the number of holes, and coolant, can be cut in half while still improving performance over regular holes. The trenched cylindrical holes did not, however, perform like the fan shaped holes.
97

A computational study for the utilization of jet pulsations in gas turbine film cooling and flow control

Kartuzova, Olga Valeryevna 29 June 2010 (has links)
No description available.
98

Chemiluminescence and High Speed Imaging of Reacting Film Cooling Layers

O'Neil, Alanna R. January 2011 (has links)
No description available.
99

Design, Development and Validation of UC Film Cooling Research Facility

Kandampalayam Kandasamy Palaniappan, Mouleeswaran January 2017 (has links)
No description available.
100

The Effect of Particle Size on Deposition in an Effusion Cooling Geometry

Wolff, Trent M. 15 August 2018 (has links)
No description available.

Page generated in 0.0805 seconds