• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Appariements collaboratifs des offres et demandes d’emploi / Collaborative Matching of Job Openings and Job Seekers

Schmitt, Thomas 29 June 2018 (has links)
Notre recherche porte sur la recommandation de nouvelles offres d'emploi venant d'être postées et n'ayant pas d'historique d'interactions (démarrage à froid). Nous adaptons les systèmes de recommandations bien connus dans le domaine du commerce électronique à cet objectif, en exploitant les traces d'usage de l'ensemble des demandeurs d'emploi sur les offres antérieures. Une des spécificités du travail présenté est d'avoir considéré des données réelles, et de s'être attaqué aux défis de l'hétérogénéité et du bruit des documents textuels. La contribution présentée intègre l'information des données collaboratives pour apprendre une nouvelle représentation des documents textes, requise pour effectuer la recommandation dite à froid d'une offre nouvelle. Cette représentation dite latente vise essentiellement à construire une bonne métrique. L'espace de recherche considéré est celui des réseaux neuronaux. Les réseaux neuronaux sont entraînés en définissant deux fonctions de perte. La première cherche à préserver la structure locale des informations collaboratives, en s'inspirant des approches de réduction de dimension non linéaires. La seconde s'inspire des réseaux siamois pour reproduire les similarités issues de la matrice collaborative. Le passage à l'échelle de l'approche et ses performances reposent sur l'échantillonnage des paires d'offres considérées comme similaires. L'intérêt de l'approche proposée est démontrée empiriquement sur les données réelles et propriétaires ainsi que sur le benchmark publique CiteULike. Enfin, l'intérêt de la démarche suivie est attesté par notre participation dans un bon rang au challenge international RecSys 2017 (15/100; un million d'utilisateurs pour un million d'offres). / Our research focuses on the recommendation of new job offers that have just been posted and have no interaction history (cold start). To this objective, we adapt well-knowns recommendations systems in the field of e-commerce by exploiting the record of use of all job seekers on previous offers. One of the specificities of the work presented is to have considered real data, and to have tackled the challenges of heterogeneity and noise of textual documents. The presented contribution integrates the information of the collaborative data to learn a new representation of text documents, which is required to make the so-called cold start recommendation of a new offer. The new representation essentially aims to build a good metric. The search space considered is that of neural networks. Neural networks are trained by defining two loss functions. The first seeks to preserve the local structure of collaborative information, drawing on non-linear dimension reduction approaches. The second is inspired by Siamese networks to reproduce the similarities from the collaborative matrix. The scaling up of the approach and its performance are based on the sampling of pairs of offers considered similar. The interest of the proposed approach is demonstrated empirically on the real and proprietary data as well as on the CiteULike public benchmark. Finally, the interest of the approach followed is attested by our participation in a good rank in the international challenge RecSys 2017 (15/100, with millions of users and millions of offers).

Page generated in 0.1023 seconds