• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization for big joins and recursive query evaluation using intersection and difference filters in MapReduce / Utilisation de filtres d’intersection et de différence pour l’optimisation des jointures à grande échelle et l’exécution de requêtes récursives à l’aide MapReduce

Phan, Thuong-Cang 07 July 2014 (has links)
La communauté informatique a créé une quantité de données sans précédent grâce aux applications à grande échelle. Ces données massives sont considérées comme une mine d’or, ces informations n’attendant que la puissance de traitement sûre et appropriée à l’évaluation d’algorithmes d’analyse complexe. MapReduce est un des modèles de programmation les plus réputé, connu pour la gestion de ce type de traitement. Il est devenu un standard pour le traitement, l’analyse et la génération de grandes quantités de données en parallèle. Cependant, le modèle de programmation MapReduce souffre d’importantes limites pour des opérations non simples (scans ou regroupements simples), en particulier les traitements avec entrées multiples. Dans ce mémoire, nous étudions et optimisons l’évaluation, dans un environnement MapReduce, d’une des opérations les plus importantes et représentatives : la jointure. Notre travail aborde, en plus de la jointure binaire, des jointures complexes comme la jointure multidimensionnelle et la jointure récursive. Pour atteindre ces objectifs, nous proposons d’abord un nouveau type de filtre appelé filter d’intersection qui utilise un modèle probabiliste pour représenter une approximation de l’intersection des ensembles. Le filtre d’intersection est ensuite appliqué à l’opération de jointure bidirectionnelle pour éliminer la majorité des éléments non-joints dans des ensembles de données d'entrée, avant d’envoyer les données pour le processus de jointure. De plus, nous proposons une extension du filtre d’intersection pour améliorer l’efficacité de la jointure ternaire et de la jointure en cascade correspondant à un cycle de jointure avec plusieurs clés partagées lors de la jointure. Nous utilisons la méthode des multiplicateurs de Lagrange afin de réaliser un choix pertinent entre les différentes solutions proposées pour les jointures multidimensionnelles. Une autre proposition est le filtre de différence, une structure de données probabiliste formée pour représenter un ensemble et examiner des éléments disjoints. Ce filtre peut être appliqué à un grand nombre de problèmes, tels que la réconciliation, la déduplication, la correction d’erreur et en ce qui nous concerne la jointure récursive. Une jointure récursive utilisant un filtre de différence est effectuée comme une répétition de jointures en lieu et place d’une jointure et d’un processus de différenciation. Cette amélioration réduit de moitié le nombre de tâches effectuées et les associés tels que la lecture des données, la génération des données intermédiaires et les communications. Ceci permet notamment une amélioration de l’évaluation de l’algorithme semi-naïf et par conséquent l’évaluation des requêtes récursives en MapReduce. Ensuite, nous fournissons des modèles de coût généraux pour les jointures binaire, à n-aire et récursive. Grâce à ces modèles, nous pouvons comparer les algorithmes de jointure les plus représentatifs. Ainsi, nous pouvons montrer l’intérêt des filtres proposés, grâce notamment à la réduction des coûts E/S (entrée/ sortie) sur disque et sur réseau. De plus, des expérimentations ont été menées, montrant l’efficacité du filtre d’intersection par rapport aux solutions, en comparant en particulier des critères tels que la quantité de données intermédiaires, la quantité de données produites en sortie, le temps d’exécution et la répartition des tâches. Nos propositions pour les opérations de jointure contribuent à l’optimisation en général de la gestion de données à l’aide du paradigme MapReduce sur des infrastructures distribuées à grande échelle. / The information technology community has created unprecedented amount of data through large-scale applications. As a result, the Big Data is considered as gold mines of information that just wait for the processing power to be available, reliable, and apt at evaluating complex analytic algorithms. MapReduce is one of the most popular programming models designed to support such processing. It has become a standard for processing, analyzing and generating large data in a massively parallel manner. However, the MapReduce programming model suffers from severe limitations of operations beyond simple scan/grouping, particularly operations with multiple inputs. In the present dissertation we efficiently investigate and optimize the evaluation, in a MapReduce environment, of one of the most salient and representative such operations: Join. It focuses not only on two-way joins, but also complex joins such as multi-way joins and recursive joins. To achieve these objectives, we first devise a new type of filter called intersection filter using a probabilistic model to represent an approximation of the set intersection. The intersection filter is then applied to two-way join operations to eliminate most non-joining elements in input datasets before sending data to actual join processing. In addition, we make an extension of the intersection filter to improve the performance of three-way joins and chain joins including both cyclic chain joins with many shared join keys. We use the Lagrangian multiplier method to indicate a good choice between our optimized solutions for the multi-way joins. Another important proposal is a difference filter, which is a probabilistic data structure designed to represent a set and examine disjoint elements of the set. It can be applied to a wide range of popular problems such as reconciliation, deduplication, error-correction, especially a recursive join operation. A recursive join using the difference filter is implemented as an iteration of one join job instead of two jobs including a join job and a difference job. This improvement will significantly reduce the number of executed jobs by half, and the related overheads such as data rescanning, intermediate data, and communication for the deduplication and difference operations. Besides, this research also improves the general semi-naive algorithm, as well as the evaluation of recursive queries in MapReduce. We then provide general cost models for two-way joins, multi-way joins, and recursive joins. Thanks to these cost models, we can make comparisons of the join algorithms more persuasive. As a result, with using the proposed filters, the join operations can minimize disk I/O and communication costs. Moreover, the intersection filter-based join operations are demonstrated to be more efficient than existing solutions through experimental evaluations. Experimental comparisons of different algorithms for joins are examined with respect to intermediate data amount, the total output amount, the total execution time, and especially task timelines. Finally, our improvements on the join operations contribute to the global scene of optimizing data management for MapReduce applications on large-scale distributed infrastructures.
2

Workload- and Data-based Automated Design for a Hybrid Row-Column Storage Model and Bloom Filter-Based Query Processing for Large-Scale DICOM Data Management / Conception automatisée basée sur la charge de travail et les données pour un modèle de stockage hybride ligne-colonne et le traitement des requêtes à l’aide de filtres de Bloom pour la gestion de données DICOM à grande échelle

Nguyen, Cong-Danh 04 May 2018 (has links)
Dans le secteur des soins de santé, les données d'images médicales toujours croissantes, le développement de technologies d'imagerie, la conservation à long terme des données médicales et l'augmentation de la résolution des images entraînent une croissance considérable du volume de données. En outre, la variété des dispositifs d'acquisition et la différence de préférences des médecins ou d'autres professionnels de la santé ont conduit à une grande variété de données. Bien que la norme DICOM (Digital Imaging et Communication in Medicine) soit aujourd'hui largement adoptée pour stocker et transférer les données médicales, les données DICOM ont toujours les caractéristiques 3V du Big Data: volume élevé, grande variété et grande vélocité. En outre, il existe une variété de charges de travail, notamment le traitement transactionnel en ligne (en anglais Online Transaction Processing, abrégé en OLTP), le traitement analytique en ligne (anglais Online Analytical Processing, abrégé en OLAP) et les charges de travail mixtes. Les systèmes existants ont des limites concernant ces caractéristiques des données et des charges de travail. Dans cette thèse, nous proposons de nouvelles méthodes efficaces pour stocker et interroger des données DICOM. Nous proposons un modèle de stockage hybride des magasins de lignes et de colonnes, appelé HYTORMO, ainsi que des stratégies de stockage de données et de traitement des requêtes. Tout d'abord, HYTORMO est conçu et mis en œuvre pour être déployé sur un environnement à grande échelle afin de permettre la gestion de grandes données médicales. Deuxièmement, la stratégie de stockage de données combine l'utilisation du partitionnement vertical et un stockage hybride pour créer des configurations de stockage de données qui peuvent réduire la demande d'espace de stockage et augmenter les performances de la charge de travail. Pour réaliser une telle configuration de stockage de données, l'une des deux approches de conception de stockage de données peut être appliquée: (1) conception basée sur des experts et (2) conception automatisée. Dans la première approche, les experts créent manuellement des configurations de stockage de données en regroupant les attributs des données DICOM et en sélectionnant une disposition de stockage de données appropriée pour chaque groupe de colonnes. Dans la dernière approche, nous proposons un cadre de conception automatisé hybride, appelé HADF. HADF dépend des mesures de similarité (entre attributs) qui prennent en compte les impacts des informations spécifiques à la charge de travail et aux données pour générer automatiquement les configurations de stockage de données: Hybrid Similarity (combinaison pondérée de similarité d'accès d'attribut et de similarité de densité d'attribut) les attributs dans les groupes de colonnes; Inter-Cluster Access Similarity est utilisé pour déterminer si deux groupes de colonnes seront fusionnés ou non (pour réduire le nombre de jointures supplémentaires); et Intra-Cluster Access La similarité est appliquée pour décider si un groupe de colonnes sera stocké dans une ligne ou un magasin de colonnes. Enfin, nous proposons une stratégie de traitement des requêtes adaptée et efficace construite sur HYTORMO. Il considère l'utilisation des jointures internes et des jointures externes gauche pour empêcher la perte de données si vous utilisez uniquement des jointures internes entre des tables partitionnées verticalement. De plus, une intersection de filtres Bloom (intersection of Bloom filters, abrégé en ) est appliqué pour supprimer les données non pertinentes des tables d'entrée des opérations de jointure; cela permet de réduire les coûts d'E / S réseau. (...) / In the health care industry, the ever-increasing medical image data, the development of imaging technologies, the long-term retention of medical data and the increase of image resolution are causing a tremendous growth in data volume. In addition, the variety of acquisition devices and the difference in preferences of physicians or other health-care professionals have led to a high variety in data. Although today DICOM (Digital Imaging and Communication in Medicine) standard has been widely adopted to store and transfer the medical data, DICOM data still has the 3Vs characteristics of Big Data: high volume, high variety and high velocity. Besides, there is a variety of workloads including Online Transaction Processing (OLTP), Online Analytical Processing (OLAP) and mixed workloads. Existing systems have limitations dealing with these characteristics of data and workloads. In this thesis, we propose new efficient methods for storing and querying DICOM data. We propose a hybrid storage model of row and column stores, called HYTORMO, together with data storage and query processing strategies. First, HYTORMO is designed and implemented to be deployed on large-scale environment to make it possible to manage big medical data. Second, the data storage strategy combines the use of vertical partitioning and a hybrid store to create data storage configurations that can reduce storage space demand and increase workload performance. To achieve such a data storage configuration, one of two data storage design approaches can be applied: (1) expert-based design and (2) automated design. In the former approach, experts manually create data storage configurations by grouping attributes and selecting a suitable data layout for each column group. In the latter approach, we propose a hybrid automated design framework, called HADF. HADF depends on similarity measures (between attributes) that can take into consideration the combined impact of both workload- and data-specific information to generate data storage configurations: Hybrid Similarity (a weighted combination of Attribute Access and Density Similarity measures) is used to group the attributes into column groups; Inter-Cluster Access Similarity is used to determine whether two column groups will be merged together or not (to reduce the number of joins); and Intra-Cluster Access Similarity is applied to decide whether a column group will be stored in a row or a column store. Finally, we propose a suitable and efficient query processing strategy built on top of HYTORMO. It considers the use of both inner joins and left-outer joins. Furthermore, an Intersection Bloom filter () is applied to reduce network I/O cost.We provide experimental evaluations to validate the benefits of the proposed methods over real DICOM datasets. Experimental results show that the mixed use of both row and column stores outperforms a pure row store and a pure column store. The combined impact of both workload-and data-specific information is helpful for HADF to be able to produce good data storage configurations. Moreover, the query processing strategy with the use of the can improve the execution time of an experimental query up to 50% when compared to the case where no is applied.

Page generated in 0.024 seconds