Spelling suggestions: "subject:"binance -- amathematical models"" "subject:"binance -- dmathematical models""
111 |
Analysing tacit collusion in oligopolistic electricity markets using a co-evolutionary approachThai, Doan Hoang Cau, Australian Graduate School of Management, Australian School of Business, UNSW January 2005 (has links)
Wholesale electricity markets now operate in many countries around the world. These markets determine a spot price for electricity as the clearing price when generators bid in energy at various prices. As the trading in a wholesale electricity market can be seen as a dynamic repeated game, it would be expected that profit maximising generators learn to engage in tacit collusion to profitably increase spot market prices. This thesis investigates this tacit collusion of generators in oligopolistic electricity markets. We do not follow the approach of previous work in game theory that presupposes firms' collusive strategies to enforce collusion in an oligopoly. Instead, we develop a co-evolutionary approach (extending previous work in this area) using a genetic algorithm (GA) to co-evolve strategies for all generators in some stylised models of an electricity market. The bidding strategy of each generator is modelled as a set of bidding actions, one for each possible discrete state of the state space observed by the generator. The market trading interactions are simulated to determine the fitness of a particular strategy. The tacitly collusive outcomes and strategies emerging from computational experiments are thus obtained from the learning or evolutionary process instead of from any pre-specification. Analysing many of those emergent collusive outcomes and strategies. we are able to specify the mechanism of tacit collusion and investigate how the market environment can affect it. We find that the learned collusive strategies are similar to the forgiving trigger strategies of classical supergame theory (Green and Porter, 1984). Also using computational experiments, we can determine which characteristics of the market environment encourage or hinder tacit collusion. The findings from this thesis provide insights on tacit collusion in an oligopoly and policy implications from a learning perspective. With modelling flexibility, our co-evolutionary approach can be extended to study strategic behaviour in an oligopoly considering many other market characteristics.
|
112 |
Analysing tacit collusion in oligopolistic electricity markets using a co-evolutionary approachThai, Doan Hoang Cau, Australian Graduate School of Management, Australian School of Business, UNSW January 2005 (has links)
Wholesale electricity markets now operate in many countries around the world. These markets determine a spot price for electricity as the clearing price when generators bid in energy at various prices. As the trading in a wholesale electricity market can be seen as a dynamic repeated game, it would be expected that profit maximising generators learn to engage in tacit collusion to profitably increase spot market prices. This thesis investigates this tacit collusion of generators in oligopolistic electricity markets. We do not follow the approach of previous work in game theory that presupposes firms' collusive strategies to enforce collusion in an oligopoly. Instead, we develop a co-evolutionary approach (extending previous work in this area) using a genetic algorithm (GA) to co-evolve strategies for all generators in some stylised models of an electricity market. The bidding strategy of each generator is modelled as a set of bidding actions, one for each possible discrete state of the state space observed by the generator. The market trading interactions are simulated to determine the fitness of a particular strategy. The tacitly collusive outcomes and strategies emerging from computational experiments are thus obtained from the learning or evolutionary process instead of from any pre-specification. Analysing many of those emergent collusive outcomes and strategies. we are able to specify the mechanism of tacit collusion and investigate how the market environment can affect it. We find that the learned collusive strategies are similar to the forgiving trigger strategies of classical supergame theory (Green and Porter, 1984). Also using computational experiments, we can determine which characteristics of the market environment encourage or hinder tacit collusion. The findings from this thesis provide insights on tacit collusion in an oligopoly and policy implications from a learning perspective. With modelling flexibility, our co-evolutionary approach can be extended to study strategic behaviour in an oligopoly considering many other market characteristics.
|
113 |
Analysing tacit collusion in oligopolistic electricity markets using a co-evolutionary approachThai, Doan Hoang Cau, Australian Graduate School of Management, Australian School of Business, UNSW January 2005 (has links)
Wholesale electricity markets now operate in many countries around the world. These markets determine a spot price for electricity as the clearing price when generators bid in energy at various prices. As the trading in a wholesale electricity market can be seen as a dynamic repeated game, it would be expected that profit maximising generators learn to engage in tacit collusion to profitably increase spot market prices. This thesis investigates this tacit collusion of generators in oligopolistic electricity markets. We do not follow the approach of previous work in game theory that presupposes firms' collusive strategies to enforce collusion in an oligopoly. Instead, we develop a co-evolutionary approach (extending previous work in this area) using a genetic algorithm (GA) to co-evolve strategies for all generators in some stylised models of an electricity market. The bidding strategy of each generator is modelled as a set of bidding actions, one for each possible discrete state of the state space observed by the generator. The market trading interactions are simulated to determine the fitness of a particular strategy. The tacitly collusive outcomes and strategies emerging from computational experiments are thus obtained from the learning or evolutionary process instead of from any pre-specification. Analysing many of those emergent collusive outcomes and strategies. we are able to specify the mechanism of tacit collusion and investigate how the market environment can affect it. We find that the learned collusive strategies are similar to the forgiving trigger strategies of classical supergame theory (Green and Porter, 1984). Also using computational experiments, we can determine which characteristics of the market environment encourage or hinder tacit collusion. The findings from this thesis provide insights on tacit collusion in an oligopoly and policy implications from a learning perspective. With modelling flexibility, our co-evolutionary approach can be extended to study strategic behaviour in an oligopoly considering many other market characteristics.
|
114 |
Analysing tacit collusion in oligopolistic electricity markets using a co-evolutionary approachThai, Doan Hoang Cau, Australian Graduate School of Management, Australian School of Business, UNSW January 2005 (has links)
Wholesale electricity markets now operate in many countries around the world. These markets determine a spot price for electricity as the clearing price when generators bid in energy at various prices. As the trading in a wholesale electricity market can be seen as a dynamic repeated game, it would be expected that profit maximising generators learn to engage in tacit collusion to profitably increase spot market prices. This thesis investigates this tacit collusion of generators in oligopolistic electricity markets. We do not follow the approach of previous work in game theory that presupposes firms' collusive strategies to enforce collusion in an oligopoly. Instead, we develop a co-evolutionary approach (extending previous work in this area) using a genetic algorithm (GA) to co-evolve strategies for all generators in some stylised models of an electricity market. The bidding strategy of each generator is modelled as a set of bidding actions, one for each possible discrete state of the state space observed by the generator. The market trading interactions are simulated to determine the fitness of a particular strategy. The tacitly collusive outcomes and strategies emerging from computational experiments are thus obtained from the learning or evolutionary process instead of from any pre-specification. Analysing many of those emergent collusive outcomes and strategies. we are able to specify the mechanism of tacit collusion and investigate how the market environment can affect it. We find that the learned collusive strategies are similar to the forgiving trigger strategies of classical supergame theory (Green and Porter, 1984). Also using computational experiments, we can determine which characteristics of the market environment encourage or hinder tacit collusion. The findings from this thesis provide insights on tacit collusion in an oligopoly and policy implications from a learning perspective. With modelling flexibility, our co-evolutionary approach can be extended to study strategic behaviour in an oligopoly considering many other market characteristics.
|
115 |
Analysing tacit collusion in oligopolistic electricity markets using a co-evolutionary approachThai, Doan Hoang Cau, Australian Graduate School of Management, Australian School of Business, UNSW January 2005 (has links)
Wholesale electricity markets now operate in many countries around the world. These markets determine a spot price for electricity as the clearing price when generators bid in energy at various prices. As the trading in a wholesale electricity market can be seen as a dynamic repeated game, it would be expected that profit maximising generators learn to engage in tacit collusion to profitably increase spot market prices. This thesis investigates this tacit collusion of generators in oligopolistic electricity markets. We do not follow the approach of previous work in game theory that presupposes firms' collusive strategies to enforce collusion in an oligopoly. Instead, we develop a co-evolutionary approach (extending previous work in this area) using a genetic algorithm (GA) to co-evolve strategies for all generators in some stylised models of an electricity market. The bidding strategy of each generator is modelled as a set of bidding actions, one for each possible discrete state of the state space observed by the generator. The market trading interactions are simulated to determine the fitness of a particular strategy. The tacitly collusive outcomes and strategies emerging from computational experiments are thus obtained from the learning or evolutionary process instead of from any pre-specification. Analysing many of those emergent collusive outcomes and strategies. we are able to specify the mechanism of tacit collusion and investigate how the market environment can affect it. We find that the learned collusive strategies are similar to the forgiving trigger strategies of classical supergame theory (Green and Porter, 1984). Also using computational experiments, we can determine which characteristics of the market environment encourage or hinder tacit collusion. The findings from this thesis provide insights on tacit collusion in an oligopoly and policy implications from a learning perspective. With modelling flexibility, our co-evolutionary approach can be extended to study strategic behaviour in an oligopoly considering many other market characteristics.
|
116 |
High order compact scheme and its applications in computational financeLee, Tsz Ho January 2010 (has links)
University of Macau / Faculty of Science and Technology / Department of Mathematics
|
117 |
Analysing tacit collusion in oligopolistic electricity markets using a co-evolutionary approachThai, Doan Hoang Cau, Australian Graduate School of Management, Australian School of Business, UNSW January 2005 (has links)
Wholesale electricity markets now operate in many countries around the world. These markets determine a spot price for electricity as the clearing price when generators bid in energy at various prices. As the trading in a wholesale electricity market can be seen as a dynamic repeated game, it would be expected that profit maximising generators learn to engage in tacit collusion to profitably increase spot market prices. This thesis investigates this tacit collusion of generators in oligopolistic electricity markets. We do not follow the approach of previous work in game theory that presupposes firms' collusive strategies to enforce collusion in an oligopoly. Instead, we develop a co-evolutionary approach (extending previous work in this area) using a genetic algorithm (GA) to co-evolve strategies for all generators in some stylised models of an electricity market. The bidding strategy of each generator is modelled as a set of bidding actions, one for each possible discrete state of the state space observed by the generator. The market trading interactions are simulated to determine the fitness of a particular strategy. The tacitly collusive outcomes and strategies emerging from computational experiments are thus obtained from the learning or evolutionary process instead of from any pre-specification. Analysing many of those emergent collusive outcomes and strategies. we are able to specify the mechanism of tacit collusion and investigate how the market environment can affect it. We find that the learned collusive strategies are similar to the forgiving trigger strategies of classical supergame theory (Green and Porter, 1984). Also using computational experiments, we can determine which characteristics of the market environment encourage or hinder tacit collusion. The findings from this thesis provide insights on tacit collusion in an oligopoly and policy implications from a learning perspective. With modelling flexibility, our co-evolutionary approach can be extended to study strategic behaviour in an oligopoly considering many other market characteristics.
|
118 |
Analysing tacit collusion in oligopolistic electricity markets using a co-evolutionary approachThai, Doan Hoang Cau, Australian Graduate School of Management, Australian School of Business, UNSW January 2005 (has links)
Wholesale electricity markets now operate in many countries around the world. These markets determine a spot price for electricity as the clearing price when generators bid in energy at various prices. As the trading in a wholesale electricity market can be seen as a dynamic repeated game, it would be expected that profit maximising generators learn to engage in tacit collusion to profitably increase spot market prices. This thesis investigates this tacit collusion of generators in oligopolistic electricity markets. We do not follow the approach of previous work in game theory that presupposes firms' collusive strategies to enforce collusion in an oligopoly. Instead, we develop a co-evolutionary approach (extending previous work in this area) using a genetic algorithm (GA) to co-evolve strategies for all generators in some stylised models of an electricity market. The bidding strategy of each generator is modelled as a set of bidding actions, one for each possible discrete state of the state space observed by the generator. The market trading interactions are simulated to determine the fitness of a particular strategy. The tacitly collusive outcomes and strategies emerging from computational experiments are thus obtained from the learning or evolutionary process instead of from any pre-specification. Analysing many of those emergent collusive outcomes and strategies. we are able to specify the mechanism of tacit collusion and investigate how the market environment can affect it. We find that the learned collusive strategies are similar to the forgiving trigger strategies of classical supergame theory (Green and Porter, 1984). Also using computational experiments, we can determine which characteristics of the market environment encourage or hinder tacit collusion. The findings from this thesis provide insights on tacit collusion in an oligopoly and policy implications from a learning perspective. With modelling flexibility, our co-evolutionary approach can be extended to study strategic behaviour in an oligopoly considering many other market characteristics.
|
119 |
Union monétaire européenne et théorie des zones monétaires optimalesBeine, Michel January 1996 (has links)
Doctorat en sciences sociales, politiques et économiques / info:eu-repo/semantics/nonPublished
|
120 |
Data Science in Finance: Robustness, Fairness, and Strategic ModelingLi, Mike January 2024 (has links)
In the multifaceted landscape of financial markets, the understanding and application of data science methods are crucial for achieving robustness, fairness, and strategic advancement. This dissertation addresses these critical areas through three interconnected studies.
The first study investigates the problem of data imbalance, with particular emphasis on financial applications such as credit risk assessment, where the prevalence of non-defaulting entities overshadows defaulting ones. Traditional classification models often falter under such imbalances, leading to biased predictions. By analyzing linear discriminant functions under conditions where one class's sample size grows indefinitely while the other remains fixed, this study reveals that certain parameters stabilize, providing robust predictions. This robustness ensures model reliability even in skewed data environments.
The second study explores anomalies in option pricing, specifically the total positivity of order 2 (TP₂) in call options and the reverse sign rule of order 2 (RR₂) in put options within the S&P 500 index. By examining the empirical significance and occurrence patterns of these violations, the research identifies potential trading opportunities. The findings demonstrate that while these conditions are mostly satisfied, violations can be strategically exploited for consistent positive returns, providing practical insights into profitable trading strategies.
The third study addresses the fairness of regulatory stress tests, which are crucial for assessing the capital adequacy of banks. The uniform application of stress test models across diverse banks raises concerns about fairness and accuracy. This study proposes a method to aggregate individual models into a common framework, balancing forecast accuracy and equitable treatment. The research demonstrates that estimating and discarding centered bank fixed effects leads to more reliable and fair stress test outcomes.
The conclusions of these studies highlight the importance of understanding the behavior of commonly used models in handling imbalanced data, the strategic exploitation of option pricing anomalies for profitable trading, and the need for fair regulatory practices to ensure financial stability. Together, these findings contribute to a deeper understanding of data science in finance, offering practical insights for regulators, financial institutions, and traders.
|
Page generated in 0.107 seconds